IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p958-d497895.html
   My bibliography  Save this article

Innovative Methodology to Identify Errors in Electric Energy Measurement Systems in Power Utilities

Author

Listed:
  • Marco Toledo-Orozco

    (Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain
    School of Electrical Engineering, Faculty of Engineering, Universidad de Cuenca, Cuenca 010109, Ecuador)

  • Carlos Arias-Marin

    (Electrical Engineering Career, Universidad Politécnica Salesiana, Sede Cuenca 010103, Ecuador)

  • Carlos Álvarez-Bel

    (Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain)

  • Diego Morales-Jadan

    (Electrical Engineering Career, Circular Economy Laboratory-CIITT, Universidad Católica de Cuenca, Sede Cuenca 010107, Ecuador)

  • Javier Rodríguez-García

    (Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain)

  • Eddy Bravo-Padilla

    (School of Electrical Engineering, Faculty of Engineering, Universidad de Cuenca, Cuenca 010109, Ecuador)

Abstract

Many electric utilities currently have a low level of smart meter implementation on traditional distribution grids. These utilities commonly have a problem associated with non-technical energy losses (NTLs) to unidentified energy flows consumed, but not billed in power distribution grids. They are usually due to either the electricity theft carried out by their own customers or failures in the utilities’ energy measurement systems. Non-technical energy losses lead to significant economic losses for electric utilities around the world. For instance, in Latin America and the Caribbean countries, NTLs represent around 15% of total energy generated in 2018, varying between 5 and 30% depending on the country because of the strong correlation with social, economic, political, and technical variables. According to this, electric utilities have a strong interest in finding new techniques and methods to mitigate this problem as much as possible. This research presents the results of determining with the precision of the existing data-oriented methods for detecting NTL through a methodology based on data analytics, machine learning, and artificial intelligence (multivariate data, analysis methods, classification, grouping algorithms, i.e., k-means and neural networks). The proposed methodology was implemented using the MATLAB computational tool, demonstrating improvements in the probability to identify the suspected customer’s measurement systems with error in their records that should be revised to reduce the NTLs in the distribution system and using the information from utilities’ databases associated with customer information (customer information system), the distribution grid (geographic information system), and socio-economic data. The proposed methodology was tested and validated in a real situation as a part of a recent Ecuadorian electric project.

Suggested Citation

  • Marco Toledo-Orozco & Carlos Arias-Marin & Carlos Álvarez-Bel & Diego Morales-Jadan & Javier Rodríguez-García & Eddy Bravo-Padilla, 2021. "Innovative Methodology to Identify Errors in Electric Energy Measurement Systems in Power Utilities," Energies, MDPI, vol. 14(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:958-:d:497895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yakubu, Osman & Babu C., Narendra & Adjei, Osei, 2018. "Electricity theft: Analysis of the underlying contributory factors in Ghana," Energy Policy, Elsevier, vol. 123(C), pages 611-618.
    2. Ahmad, Tanveer & Chen, Huanxin & Wang, Jiangyu & Guo, Yabin, 2018. "Review of various modeling techniques for the detection of electricity theft in smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2916-2933.
    3. Jamil, Faisal & Ahmad, Eatzaz, 2019. "Policy considerations for limiting electricity theft in the developing countries," Energy Policy, Elsevier, vol. 129(C), pages 452-458.
    4. Anna I. Pózna & Attila Fodor & Katalin M. Hangos, 2019. "Model-based fault detection and isolation of non-technical losses in electrical networks," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 25(4), pages 397-428, July.
    5. Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.
    6. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Gautier, Axel & Nsabimana, René & Walheer, Barnabé, 2023. "Quality performance gaps and minimal electricity losses in East Africa," Utilities Policy, Elsevier, vol. 82(C).
    3. Fernando de Souza Savian & Julio Cezar Mairesse Siluk & Tai s Bisognin Garlet & Felipe Moraes do Nascimento & Jose Renes Pinheiro & Zita Vale, 2022. "Non-technical Losses in Brazil: Overview, Challenges, and Directions for Identification and Mitigation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 93-107, May.
    4. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    5. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Muhammad Salman Saeed & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Nawa A. Alshammari & Usman Ullah Sheikh & Touqeer Ahmed Jumani & Saifulnizam Bin Abd Khalid & Ilyas Khan, 2020. "Detection of Non-Technical Losses in Power Utilities—A Comprehensive Systematic Review," Energies, MDPI, vol. 13(18), pages 1-25, September.
    7. Babar, Zainab & Jamil, Faisal & Haq, Wajiha, 2022. "Consumer's perception towards electricity theft: A case study of Islamabad and Rawalpindi using a path analysis," Energy Policy, Elsevier, vol. 169(C).
    8. Gideon Otchere-Appiah & Shingo Takahashi & Mavis Serwaa Yeboah & Yuichiro Yoshida, 2021. "The Impact of Smart Prepaid Metering on Non-Technical Losses in Ghana," Energies, MDPI, vol. 14(7), pages 1-16, March.
    9. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    10. Rubén González Rodríguez & Jamer Jiménez Mares & Christian G. Quintero M., 2020. "Computational Intelligent Approaches for Non-Technical Losses Management of Electricity," Energies, MDPI, vol. 13(9), pages 1-25, May.
    11. Wabukala, Benard M. & Mukisa, Nicholas & Watundu, Susan & Bergland, Olvar & Rudaheranwa, Nichodemus & Adaramola, Muyiwa S., 2023. "Impact of household electricity theft and unaffordability on electricity security: A case of Uganda," Energy Policy, Elsevier, vol. 173(C).
    12. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Theft in Mexico," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 250-254.
    13. Hugo Brise o & Jessica Rubiano & Rodolfo Garc a & Omar Rojas, 2021. "Factors Associated with Electricity Losses in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 465-470.
    14. Netzah Calamaro & Yuval Beck & Ran Ben Melech & Doron Shmilovitz, 2021. "An Energy-Fraud Detection-System Capable of Distinguishing Frauds from Other Energy Flow Anomalies in an Urban Environment," Sustainability, MDPI, vol. 13(19), pages 1-38, September.
    15. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    16. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    17. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    18. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    19. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.
    20. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:958-:d:497895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.