IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48450-7.html
   My bibliography  Save this article

Carbon pricing and system reliability impacts on pathways to universal electricity access in Africa

Author

Listed:
  • Hamish Beath

    (Imperial College London
    Imperial College London)

  • Shivika Mittal

    (Imperial College London
    CICERO Center for International Climate Research)

  • Sheridan Few

    (Imperial College London
    University of Leeds)

  • Benedict Winchester

    (Imperial College London
    Imperial College London)

  • Philip Sandwell

    (Imperial College London
    Imperial College London)

  • Christos N. Markides

    (Imperial College London)

  • Jenny Nelson

    (Imperial College London
    Imperial College London)

  • Ajay Gambhir

    (Imperial College London)

Abstract

Off-grid photovoltaic systems have been proposed as a panacea for economies with poor electricity access, offering a lower-cost “leapfrog” over grid infrastructure used in higher-income economies. Previous research examining pathways to electricity access may understate the role of off-grid photovoltaics as it has not considered reliability and carbon pricing impacts. We perform high-resolution geospatial analysis on universal household electricity access in Sub-Saharan Africa that includes these aspects via least-cost pathways at different electricity demand levels. Under our “Tier 3" demand reference scenario, 24% of our study’s 470 million people obtaining electricity access by 2030 do so via off-grid photovoltaics. Including a unit cost for unmet demand of 0.50 US dollars ($)/kWh, to penalise poor system reliability increases this share to 41%. Applying a carbon price (around $80/tonne CO2-eq) increases it to 38%. Our results indicate considerable diversity in the level of policy intervention needed between countries and suggest several regions where lower levels of policy intervention may be effective.

Suggested Citation

  • Hamish Beath & Shivika Mittal & Sheridan Few & Benedict Winchester & Philip Sandwell & Christos N. Markides & Jenny Nelson & Ajay Gambhir, 2024. "Carbon pricing and system reliability impacts on pathways to universal electricity access in Africa," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48450-7
    DOI: 10.1038/s41467-024-48450-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48450-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48450-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan T. Lee & Duncan S. Callaway, 2018. "The cost of reliability in decentralized solar power systems in sub-Saharan Africa," Nature Energy, Nature, vol. 3(11), pages 960-968, November.
    2. Sheilla Nyasha & Yvonne Gwenhure & Nicholas M Odhiambo, 2018. "Energy consumption and economic growth in Ethiopia: A dynamic causal linkage," Energy & Environment, , vol. 29(8), pages 1393-1412, December.
    3. DeVynne Farquharson & Paulina Jaramillo & Constantine Samaras, 2018. "Sustainability implications of electricity outages in sub-Saharan Africa," Nature Sustainability, Nature, vol. 1(10), pages 589-597, October.
    4. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    5. Yacob Mulugetta & Youba Sokona & Philipp A. Trotter & Samuel Fankhauser & Jessica Omukuti & Lucas Somavilla Croxatto & Bjarne Steffen & Meron Tesfamichael & Edo Abraham & Jean-Paul Adam & Lawrence Agb, 2022. "Africa needs context-relevant evidence to shape its clean energy future," Nature Energy, Nature, vol. 7(11), pages 1015-1022, November.
    6. Meles, Tensay Hadush, 2020. "Impact of power outages on households in developing countries: Evidence from Ethiopia," Energy Economics, Elsevier, vol. 91(C).
    7. Andersen, Thomas Barnebeck & Dalgaard, Carl-Johan, 2013. "Power outages and economic growth in Africa," Energy Economics, Elsevier, vol. 38(C), pages 19-23.
    8. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    9. Ajodhia, Virendra & Hakvoort, Rudi, 2005. "Economic regulation of quality in electricity distribution networks," Utilities Policy, Elsevier, vol. 13(3), pages 211-221, September.
    10. Duccio Baldi & Magda Moner-Girona & Elena Fumagalli & Fernando Fahl, 2022. "Planning sustainable electricity solutions for refugee settlements in sub-Saharan Africa," Nature Energy, Nature, vol. 7(4), pages 369-379, April.
    11. Moner-Girona, M. & Bender, A. & Becker, W. & Bódis, K. & Szabó, S. & Kararach, A.G. & Anadon, L.D., 2021. "A multidimensional high-resolution assessment approach to boost decentralised energy investments in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2021. "Impacts of Electricity Outages in Urban Households in Developing Countries: A Case of Accra, Ghana," Energies, MDPI, vol. 14(12), pages 1-26, June.
    2. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    3. Paul Nduhuura & Matthias Garschagen & Abdellatif Zerga, 2020. "Mapping and Spatial Analysis of Electricity Load Shedding Experiences: A Case Study of Communities in Accra, Ghana," Energies, MDPI, vol. 13(17), pages 1-26, August.
    4. Chen, Hao & Jin, Lu & Wang, Mingming & Guo, Lin & Wu, Jingwen, 2023. "How will power outages affect the national economic growth: Evidence from 152 countries," Energy Economics, Elsevier, vol. 126(C).
    5. Jeuland, Marc & Babyenda, Peter & Beyene, Abebe & Hinju, Gabriel & Mulwa, Richard & Phillips, Jonathan & Zewdie, Samuel A., 2023. "Barriers to off-grid energy development: Evidence from a comparative survey of private sector energy service providers in Eastern Africa," Renewable Energy, Elsevier, vol. 216(C).
    6. Jamil, Faisal & Islam, Tanweer Ul, 2023. "Outage-induced power backup choice in Pakistan," Utilities Policy, Elsevier, vol. 82(C).
    7. Odin Foldvik Eikeland & Filippo Maria Bianchi & Inga Setså Holmstrand & Sigurd Bakkejord & Sergio Santos & Matteo Chiesa, 2022. "Uncovering Contributing Factors to Interruptions in the Power Grid: An Arctic Case," Energies, MDPI, vol. 15(1), pages 1-21, January.
    8. Yuan, Peng & Pu, Yuran & Liu, Chang, 2021. "Improving electricity supply reliability in China: Cost and incentive regulation," Energy, Elsevier, vol. 237(C).
    9. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    10. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    11. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    12. Nykamp, Stefan & Andor, Mark & Hurink, Johann L., 2012. "‘Standard’ incentive regulation hinders the integration of renewable energy generation," Energy Policy, Elsevier, vol. 47(C), pages 222-237.
    13. Yunusov, Timur & Torriti, Jacopo, 2021. "Distributional effects of Time of Use tariffs based on electricity demand and time use," Energy Policy, Elsevier, vol. 156(C).
    14. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    15. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.
    16. Montrone, Lorenzo & Steckel, Jan Christoph & Kalkuhl, Matthias, 2022. "The type of power capacity matters for economic development – Evidence from a global panel," Resource and Energy Economics, Elsevier, vol. 69(C).
    17. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    18. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    19. Yu, Jian & Liu, Peng & Fu, Dahai & Shi, Xunpeng, 2023. "How do power shortages affect CO2 emission intensity? Firm-level evidence from China," Energy, Elsevier, vol. 282(C).
    20. Robert Van Buskirk & Lawrence Kachione & Gilbert Robert & Rachel Kanyerere & Christina Gilbert & James Majoni, 2021. "How to Make Off-Grid Solar Electric Cooking Cheaper Than Wood-Based Cooking," Energies, MDPI, vol. 14(14), pages 1-21, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48450-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.