IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4060-d395071.html
   My bibliography  Save this article

Pyrolysis Kinetic Parameters of Omari Oil Shale Using Thermogravimetric Analysis

Author

Listed:
  • Ziad Abu El-Rub

    (Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan)

  • Joanna Kujawa

    (Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland)

  • Samer Al-Gharabli

    (Pharmaceutical and Chemical Engineering Department, German Jordanian University, Amman 11180, Jordan)

Abstract

Oil shale is one of the alternative energies and fuel solutions in Jordan because of the scarcity of conventional sources, such as petroleum, coal, and gas. Oil from oil shale reservoirs can be produced commercially by pyrolysis technology. To optimize the process, mechanisms and rates of reactions need to be investigated. Omari oil shale formation in Jordan was selected as a case study, for which no kinetic models are available in the literature. Oil shale was analyzed using the Fischer assay method, proximate analysis (moisture, volatile, and ash), gross calorific value, elemental analysis (CHNS), and X-ray fluorescence (XRF) measurements. Non-isothermal thermogravimetric analysis was applied to study the kinetic parameters (activation energy and frequency factor) at four selected heating rates (5, 10, 15, and 20 °C/min). When oil shale was heated from room temperature to 1100 °C, the weight loss profile exhibited three different zones: drying (devolatilization), pyrolysis, and mineral decomposition. For each zone, the kinetic parameters were calculated using three selected methods: integral, temperature integral approximation, and direct Arrhenius plot. Furthermore, the activation energy in the pyrolysis zone was 112–116 kJ/mol, while the frequency factor was 2.0 × 10 7 − 1.5 × 10 9 min −1 . Moreover, the heating rate has a directly proportional relationship with the rate constant at each zone. The three different methods gave comparable results for the kinetic parameters with a higher coefficient of determination (R 2 ) for the integral and temperature integral approximation compared with the direct Arrhenius plot. The determined kinetic parameters for Omari formation can be employed in developing pyrolysis reactor models.

Suggested Citation

  • Ziad Abu El-Rub & Joanna Kujawa & Samer Al-Gharabli, 2020. "Pyrolysis Kinetic Parameters of Omari Oil Shale Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4060-:d:395071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Ayed, Omar S. & Suliman, Mohd R. & Rahman, Nafi Abdel, 2010. "Kinetic modeling of liquid generation from oil shale in fixed bed retort," Applied Energy, Elsevier, vol. 87(7), pages 2273-2277, July.
    2. Ziad Abu El-Rub & Joanna Kujawa & Esra’a Albarahmieh & Nafisah Al-Rifai & Fathieh Qaimari & Samer Al-Gharabli, 2019. "High Throughput Screening and Characterization Methods of Jordanian Oil Shale as a Case Study," Energies, MDPI, vol. 12(16), pages 1-16, August.
    3. Pan, Luwei & Dai, Fangqin & Li, Guangqiang & Liu, Shuang, 2015. "A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale," Energy, Elsevier, vol. 86(C), pages 749-757.
    4. Jaber, J. O. & Probert, S. D., 1999. "Pyrolysis and gasification kinetics of Jordanian oil-shales," Applied Energy, Elsevier, vol. 63(4), pages 269-286, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
    2. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    3. Niu, Mengting & Wang, Sha & Han, Xiangxin & Jiang, Xiumin, 2013. "Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures," Applied Energy, Elsevier, vol. 111(C), pages 234-239.
    4. Wei Guo & Zhendong Wang & Youhong Sun & Xiaoshu Lü & Yuan Wang & Sunhua Deng & Qiang Li, 2020. "Effects of Packer Locations on Downhole Electric Heater Performance: Experimental Test and Economic Analysis," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Ju, Yang & He, Jian & Chang, Elliot & Zheng, Liange, 2019. "Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation," Energy, Elsevier, vol. 170(C), pages 411-422.
    6. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    7. Al-Ayed, Omar S. & Suliman, Mohd R. & Rahman, Nafi Abdel, 2010. "Kinetic modeling of liquid generation from oil shale in fixed bed retort," Applied Energy, Elsevier, vol. 87(7), pages 2273-2277, July.
    8. Zhang, Yuming & Yu, Deping & Li, Wangliang & Gao, Shiqiu & Xu, Guangwen & Zhou, Huaqun & Chen, Jing, 2013. "Fundamental study of cracking gasification process for comprehensive utilization of vacuum residue," Applied Energy, Elsevier, vol. 112(C), pages 1318-1325.
    9. Jaber, J. O. & Al-Sarkhi, A. & Akash, B. A. & Mohsen, M. S., 2004. "Medium-range planning economics of future electrical-power generation options," Energy Policy, Elsevier, vol. 32(3), pages 357-366, February.
    10. Niu, Shengli & Han, Kuihua & Lu, Chunmei & Sun, Rongyue, 2010. "Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate," Applied Energy, Elsevier, vol. 87(7), pages 2237-2242, July.
    11. Jun-Ho Jo & Seung-Soo Kim & Jae-Wook Shim & Ye-Eun Lee & Yeong-Seok Yoo, 2017. "Pyrolysis Characteristics and Kinetics of Food Wastes," Energies, MDPI, vol. 10(8), pages 1-13, August.
    12. Al-Ayed, Omar S. & Matouq, M. & Anbar, Z. & Khaleel, Adnan M. & Abu-Nameh, Eyad, 2010. "Oil shale pyrolysis kinetics and variable activation energy principle," Applied Energy, Elsevier, vol. 87(4), pages 1269-1272, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4060-:d:395071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.