IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p4012-d394166.html
   My bibliography  Save this article

Development of an Elevation–Fresnel Linked Mini-Heliostat Array

Author

Listed:
  • Isaías Moreno-Cruz

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de Mexico, Privada Xochicalco s/n, Colonia Centro, Temixco, Morelos 62580, Mexico)

  • Juan Carlos Castro

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de Mexico, Privada Xochicalco s/n, Colonia Centro, Temixco, Morelos 62580, Mexico
    Gadgets & Design, S. A. de C. V., Periférico Sur 4302-105, Colonia Jardines del Pedregal, Coyoacán, Ciudad de Mexico 04500, Mexico)

  • Omar Álvarez-Brito

    (Gadgets & Design, S. A. de C. V., Periférico Sur 4302-105, Colonia Jardines del Pedregal, Coyoacán, Ciudad de Mexico 04500, Mexico)

  • Hilda B. Mota-Nava

    (Gadgets & Design, S. A. de C. V., Periférico Sur 4302-105, Colonia Jardines del Pedregal, Coyoacán, Ciudad de Mexico 04500, Mexico)

  • Guillermo Ramírez-Zúñiga

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de Mexico, Privada Xochicalco s/n, Colonia Centro, Temixco, Morelos 62580, Mexico
    División Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Avenida Universidad Tecnológica 1, Colonia Palo Escrito, Emiliano Zapata, Morelos 62760, Mexico)

  • José J. Quiñones-Aguilar

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de Mexico, Privada Xochicalco s/n, Colonia Centro, Temixco, Morelos 62580, Mexico)

  • Camilo A. Arancibia-Bulnes

    (Instituto de Energías Renovables, Universidad Nacional Autónoma de Mexico, Privada Xochicalco s/n, Colonia Centro, Temixco, Morelos 62580, Mexico)

Abstract

Heliostats are critical components of solar tower technology and different strategies have been proposed to reduce their costs; among them diminishing their size to reduce wind loads or linking nearby heliostats mechanically, to reduce the overall number of actuators. This document aims to describe the development of a linked array of mini-heliostats which move together in an elevation–Fresnel configuration. This configuration consists of an array of mirrors rotating around linked parallel axes, in a linear Fresnel style with an added elevation mechanism allowing all axes to incline simultaneously in the plane North–South–Zenith; that is equivalent to an array of N linked mini-heliostats moved by only two drives instead of 2N. A detailed analytical study of the Sun-tracking performance of this kind of heliostat arrays was carried out, and an 8-mirror prototype based on optical and mechanical analyses was designed, built and tested. Even though the mirrors are flat, the array produced a rather compact radiative flux distribution on the receiver. The flux distribution is compatible with a slope error of the order of 1 mrad. Peak and mean concentration ratios reached 6.89 and 3.94, respectively.

Suggested Citation

  • Isaías Moreno-Cruz & Juan Carlos Castro & Omar Álvarez-Brito & Hilda B. Mota-Nava & Guillermo Ramírez-Zúñiga & José J. Quiñones-Aguilar & Camilo A. Arancibia-Bulnes, 2020. "Development of an Elevation–Fresnel Linked Mini-Heliostat Array," Energies, MDPI, vol. 13(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4012-:d:394166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/4012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/4012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    2. Bonanos, A.M. & Faka, M. & Abate, D. & Hermon, S. & Blanco, M.J., 2019. "Heliostat surface shape characterization for accurate flux prediction," Renewable Energy, Elsevier, vol. 142(C), pages 30-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    3. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    4. Wu, Junjie & Hou, Hongjuan & Yang, Yongping & Hu, Eric, 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity," Applied Energy, Elsevier, vol. 157(C), pages 123-133.
    5. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    6. Chiesi, Matteo & Franchi Scarselli, Eleonora & Guerrieri, Roberto, 2017. "Run-time detection and correction of heliostat tracking errors," Renewable Energy, Elsevier, vol. 105(C), pages 702-711.
    7. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    8. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    9. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    10. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    11. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
    13. Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).
    14. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    15. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    16. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.
    17. Zecan Tu & Daniela Piccioni Koch & Nenad Sarunac & Martin Frank & Junkui Mao, 2021. "Thermal Analysis of a Solar External Receiver Tube with a Novel Component of Guide Vanes," Energies, MDPI, vol. 14(8), pages 1-21, April.
    18. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
    19. Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
    20. Ehtiwesh, Amin & Kutlu, Cagri & Su, Yuehong & Riffat, Saffa, 2023. "Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya," Renewable Energy, Elsevier, vol. 206(C), pages 795-807.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4012-:d:394166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.