Run-time detection and correction of heliostat tracking errors
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.12.093
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chiesi, Matteo & Vanzolini, Luca & Franchi Scarselli, Eleonora & Guerrieri, Roberto, 2013. "Accurate optical model for design and analysis of solar fields based on heterogeneous multicore systems," Renewable Energy, Elsevier, vol. 55(C), pages 241-251.
- Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
- Siala, F.M.F & Elayeb, M.E, 2001. "Mathematical formulation of a graphical method for a no-blocking heliostat field layout," Renewable Energy, Elsevier, vol. 23(1), pages 77-92.
- Kribus, Abraham & Vishnevetsky, Irina & Yogev, Amnon & Rubinov, Tatiana, 2004. "Closed loop control of heliostats," Energy, Elsevier, vol. 29(5), pages 905-913.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carballo, Jose A. & Bonilla, Javier & Berenguel, Manuel & Fernández-Reche, Jesús & García, Ginés, 2019. "New approach for solar tracking systems based on computer vision, low cost hardware and deep learning," Renewable Energy, Elsevier, vol. 133(C), pages 1158-1166.
- Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.
- Lin, Xiaoxia & He, Caitou & Huang, Wenjun & Zhao, Yuhong & Feng, Jieqing, 2022. "GPU-based Monte Carlo ray tracing simulation considering refraction for central receiver system," Renewable Energy, Elsevier, vol. 193(C), pages 367-382.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
- Carrizosa, E. & Domínguez-Bravo, C. & Fernández-Cara, E. & Quero, M., 2015. "Optimization of multiple receivers solar power tower systems," Energy, Elsevier, vol. 90(P2), pages 2085-2093.
- Piroozmand, Pasha & Boroushaki, Mehrdad, 2016. "A computational method for optimal design of the multi-tower heliostat field considering heliostats interactions," Energy, Elsevier, vol. 106(C), pages 240-252.
- Zaharaddeen Ali Hussaini & Peter King & Chris Sansom, 2020. "Numerical Simulation and Design of Multi-Tower Concentrated Solar Power Fields," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
- Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
- Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
- Yerudkar, Aditi N. & Kumar, Durgesh & Dalvi, Vishwanath H. & Panse, Sudhir V. & Gaval, Vivek R. & Joshi, Jyeshtharaj B., 2024. "Economically feasible solutions in concentrating solar power technology specifically for heliostats – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
- Liu, Zengqiang & Lin, Xiaoxia & Zhao, Yuhong & Feng, Jieqing, 2023. "Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation," Energy, Elsevier, vol. 276(C).
- Omar Behar & Daniel Sbarbaro & Luis Morán, 2020. "A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
- Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
- Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
- Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Wang, Jianxing & Duan, Liqiang & Yang, Yongping, 2018. "An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field," Energy, Elsevier, vol. 155(C), pages 15-28.
- Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
- Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
- Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
- Hu, Peng & Huang, Weidong, 2018. "Performance analysis and optimization of an integrated azimuth tracking solar tower," Energy, Elsevier, vol. 157(C), pages 247-257.
- Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
- Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
More about this item
Keywords
Solar tower power plants; Parallel computing; Closed-loop solar tracker; Distributed sensors; Microelectromechanical systems (MEMS); e-compass;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:702-711. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.