IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3709-d386549.html
   My bibliography  Save this article

A Fuzzy Energy Management Strategy for the Coordination of Electric Vehicle Charging in Low Voltage Distribution Grids

Author

Listed:
  • Vasileios Boglou

    (Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece)

  • Christos-Spyridon Karavas

    (Department of Natural Resources Development and Agricultural Engineering, School of Environment and Agricultural Engineering, Agricultural University of Athens, 118 55 Athens, Greece
    Research, Technology & Development Department, Independent Power Transmission Operator (IPTO) S.A., 104 43 Athens, Greece)

  • Konstantinos Arvanitis

    (Department of Natural Resources Development and Agricultural Engineering, School of Environment and Agricultural Engineering, Agricultural University of Athens, 118 55 Athens, Greece)

  • Athanasios Karlis

    (Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace, 671 00 Xanthi, Greece)

Abstract

Electric vehicles (EVs) have become widespread during the last decade because of the distinct advantages they offer compared to the conventional ones. However, the increased penetration of EVs in the global transportation market has led increased electricity demands, which is expected to affect the operation of energy distribution systems. In the present paper, a demonstration about the effects of uncontrolled EVs charging in a case study low voltage (LV) network is demonstrated and a fuzzy energy management strategy for the coordination of EV charging in LV networks is presented, by including the distance of the EVs from the transformers in the fuzzy management systems for the first time. The Institute of Electrical and Electronics Engineers (IEEE) European Test Feeder is used as a case study low voltage distribution grid. In particular, the developed system configuration takes into consideration the architecture of the grid, the ampacities of the lines and the voltages at the system’s buses. Moreover, electric vehicles are considered as agent-based models, which are characterized by the model of each EV, the state-of-charge of their batteries and the charging power. In particular, an investigation into the effects of uncontrolled charging is performed, in which two approaches are examined. The first approach investigates the maximum number of chargeable EVs in the case study network and how it is influenced by the grid’s household loads. The second approach examines the number of network undervoltages and lines ampacity violations in a set of simulation scenarios. The results of the first approach show that the distance of the EVs from the networks substation affects the maximum number of chargeable EVs in a significant manner. Based on the observed results of the two approaches, a fuzzy management system is designed for the coordination of EV changing, which takes into account the distance from the EV charging points to the feeder substation, the state-of-charge of the EVs’ batteries and the EVs’ charging delay time.

Suggested Citation

  • Vasileios Boglou & Christos-Spyridon Karavas & Konstantinos Arvanitis & Athanasios Karlis, 2020. "A Fuzzy Energy Management Strategy for the Coordination of Electric Vehicle Charging in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(14), pages 1-34, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3709-:d:386549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    2. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    3. Christos-Spyridon Karavas & Konstantinos Arvanitis & George Papadakis, 2017. "A Game Theory Approach to Multi-Agent Decentralized Energy Management of Autonomous Polygeneration Microgrids," Energies, MDPI, vol. 10(11), pages 1-22, November.
    4. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    5. Chong Cao & Luting Wang & Bo Chen, 2016. "Mitigation of the Impact of High Plug-in Electric Vehicle Penetration on Residential Distribution Grid Using Smart Charging Strategies," Energies, MDPI, vol. 9(12), pages 1-19, December.
    6. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    2. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    3. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    4. Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán & Jose L. Martínez-Ramos, 2021. "Centralized Control of Distribution Networks with High Penetration of Renewable Energies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    5. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    6. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    7. Sofana Reka S & Prakash Venugopal & Ravi V & Hassan Haes Alhelou & Amer Al-Hinai & Pierluigi Siano, 2022. "Analysis of Electric Vehicles with an Economic Perspective for the Future Electric Market," Future Internet, MDPI, vol. 14(6), pages 1-17, May.
    8. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    9. Nur Ayeesha Qisteena Muzir & Md. Rayid Hasan Mojumder & Md. Hasanuzzaman & Jeyraj Selvaraj, 2022. "Challenges of Electric Vehicles and Their Prospects in Malaysia: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-40, July.
    10. Minh-Quan Tran & Ahmed S. Zamzam & Phuong H. Nguyen & Guus Pemen, 2021. "Multi-Area Distribution System State Estimation Using Decentralized Physics-Aware Neural Networks," Energies, MDPI, vol. 14(11), pages 1-13, May.
    11. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    12. Zhen Huang & Xuechun Xiao & Yuan Gao & Yonghong Xia & Tomislav Dragičević & Pat Wheeler, 2023. "Emerging Information Technologies for the Energy Management of Onboard Microgrids in Transportation Applications," Energies, MDPI, vol. 16(17), pages 1-26, August.
    13. Mohammed Radi & Mohamed Darwish & Gareth Taylor & Ioana Pisica, 2021. "Control Configurations for Reactive Power Compensation at the Secondary Side of the Low Voltage Substation by Using Hybrid Transformer," Energies, MDPI, vol. 14(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    2. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    3. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    4. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    5. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    6. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    7. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Seyfettin Vadi & Ramazan Bayindir & Alperen Mustafa Colak & Eklas Hossain, 2019. "A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies," Energies, MDPI, vol. 12(19), pages 1-27, September.
    9. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    10. Theodoros A. Skouras & Panagiotis K. Gkonis & Charalampos N. Ilias & Panagiotis T. Trakadas & Eleftherios G. Tsampasis & Theodore V. Zahariadis, 2019. "Electrical Vehicles: Current State of the Art, Future Challenges, and Perspectives," Clean Technol., MDPI, vol. 2(1), pages 1-16, December.
    11. Shun Xiang & Guangdi Hu & Ruisen Huang & Feng Guo & Pengkai Zhou, 2018. "Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints," Energies, MDPI, vol. 11(2), pages 1-20, January.
    12. Qing Deng & Changsen Feng & Fushuan Wen & Chung-Li Tseng & Lei Wang & Bo Zou & Xizhu Zhang, 2019. "Evaluation of Accommodation Capability for Electric Vehicles of a Distribution System Considering Coordinated Charging Strategies," Energies, MDPI, vol. 12(16), pages 1-20, August.
    13. Khairy Sayed & Abdulaziz Almutairi & Naif Albagami & Omar Alrumayh & Ahmed G. Abo-Khalil & Hedra Saleeb, 2022. "A Review of DC-AC Converters for Electric Vehicle Applications," Energies, MDPI, vol. 15(3), pages 1-32, February.
    14. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    17. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    18. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    19. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3709-:d:386549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.