IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3461-d380283.html
   My bibliography  Save this article

Experimental Hydration Temperature Increase in Borehole Heat Exchangers during Thermal Response Tests for Geothermal Heat Pump Design

Author

Listed:
  • Fabio Minchio

    (Studio 3F Engineering, Via IV Novembre 14, 36051 Creazzo, Italy)

  • Gabriele Cesari

    (Geo-Net S.r.l., Via Giuseppe Saragat 5, 40026 Imola, Italy)

  • Claudio Pastore

    (Geo-Net S.r.l., Via Giuseppe Saragat 5, 40026 Imola, Italy)

  • Marco Fossa

    (DIME Department of Mechanical, Energy, Management and Transportation Engineering, the University of Genova, Via Opera Pia 15a, 16145 Genova, Italy)

Abstract

The correct design of a system of borehole heat exchangers (BHEs) is the primary requirement for attaining high performance with geothermal heat pumps. The design procedure is based on a reliable estimate of ground thermal properties, which can be assessed by a Thermal Response Test (TRT). The TRT analysis is usually performed adopting the Infinite Line Source model and is based on a series of assumptions to which the experiment must comply, including stable initial ground temperatures and a constant heat transfer rate during the experiment. The present paper novelty is related to depth distributed temperature measurements in a series of TRT experiments. The approach is based on the use of special submersible sensors able to record their position inside the pipes. The focus is on the early period of BHE installation, when the grout cement filling the BHE is still chemically reacting, thus releasing extra heat. The comprehensive dataset presented here shows how grout hydration can affect the depth profile of the undisturbed ground temperature and how the temperature evolution in time and space can be used for assessing the correct recovery period for starting the TRT experiment and inferring information on grouting defects along the BHE depth.

Suggested Citation

  • Fabio Minchio & Gabriele Cesari & Claudio Pastore & Marco Fossa, 2020. "Experimental Hydration Temperature Increase in Borehole Heat Exchangers during Thermal Response Tests for Geothermal Heat Pump Design," Energies, MDPI, vol. 13(13), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3461-:d:380283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    2. Fossa, M. & Priarone, A. & Silenzi, F., 2020. "Superposition of the single point source solution to generate temperature response factors for geothermal piles," Renewable Energy, Elsevier, vol. 145(C), pages 805-813.
    3. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ignacio Martín Nieto & Cristina Sáez Blázquez & Arturo Farfán Martín & Diego González-Aguilera, 2020. "Analysis of the Influence of Reducing the Duration of a Thermal Response Test in a Water-Filled Geothermal Borehole Located in Spain," Energies, MDPI, vol. 13(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilke, Sascha & Menberg, Kathrin & Steger, Hagen & Blum, Philipp, 2020. "Advanced thermal response tests: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. Li, Min & Zhang, Liwen & Liu, Gang, 2020. "Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response tests," Renewable Energy, Elsevier, vol. 150(C), pages 435-442.
    4. Hans Schwarz & Borja Badenes & Jan Wagner & José Manuel Cuevas & Javier Urchueguía & David Bertermann, 2021. "A Case Study of Thermal Evolution in the Vicinity of Geothermal Probes Following a Distributed TRT Method," Energies, MDPI, vol. 14(9), pages 1-17, May.
    5. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    6. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    7. Tomasz Sliwa & Aneta Sapińska-Śliwa & Tomasz Wysogląd & Tomasz Kowalski & Izabela Konopka, 2021. "Strength Tests of Hardened Cement Slurries for Energy Piles, with the Addition of Graphite and Graphene, in Terms of Increasing the Heat Transfer Efficiency," Energies, MDPI, vol. 14(4), pages 1-20, February.
    8. Bulmez, A.M. & Ciofoaia, V. & Năstase, G. & Dragomir, G. & Brezeanu, A.I. & Şerban, A., 2022. "An experimental work on the performance of a solar-assisted ground-coupled heat pump using a horizontal ground heat exchanger," Renewable Energy, Elsevier, vol. 183(C), pages 849-865.
    9. Ilayda Berktas & Ali Nejad Ghafar & Patrick Fontana & Ayten Caputcu & Yusuf Menceloglu & Burcu Saner Okan, 2020. "Synergistic Effect of Expanded Graphite-Silane Functionalized Silica as a Hybrid Additive in Improving the Thermal Conductivity of Cementitious Grouts with Controllable Water Uptake," Energies, MDPI, vol. 13(14), pages 1-15, July.
    10. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    11. Zhang, Tiansheng & Liu, Chun & Bayer, Peter & Zhang, Liwei & Gong, Xulong & Gu, Kai & Shi, Bin, 2022. "City-wide monitoring and contributing factors to shallow subsurface temperature variability in Nanjing, China," Renewable Energy, Elsevier, vol. 199(C), pages 1105-1115.
    12. Urchueguia, Javier F. & Badenes, Borja & Mateo Pla, Miguel A. & Armengot, Bruno & Javadi, Hossein, 2024. "New trilobular geometry using advanced materials for experimentally validated enhanced heat transfer in shallow geothermal applications," Renewable Energy, Elsevier, vol. 222(C).
    13. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2020. "Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials," Energies, MDPI, vol. 13(19), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3461-:d:380283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.