IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp194-204.html
   My bibliography  Save this article

Uncertainty estimation in wave energy systems with applications in robust energy maximising control

Author

Listed:
  • Farajvand, Mahdiyeh
  • Grazioso, Valerio
  • García-Violini, Demián
  • Ringwood, John V.

Abstract

Under control action, wave energy devices typically display nonlinear hydrodynamic behaviour, making the design of energy maximising control somewhat onerous. One solution to approach the optimal performance for nonlinear control problem under model mismatches is to employ a linear control strategy, which can be robust to linear model mismatches. However, accurate characterisation of the uncertainty in the linear model is vital, if the controller is to adequately capture the full extent of the uncertainty, while not being overly conservative due to overestimation of the uncertainty. This paper describes a procedure, employing CFD-based numerical tank experiments, to accurately produce a nominal linear empirical transfer function model, along with an accurate estimate of the uncertainty bounds in that linear model, due to hydrodynamic uncertainty. A robust control case study is provided, illustrating the nominal model estimation process, and its corresponding uncertainty set, including the complete procedure, required to generate the robust controller. Robust control results, on the fully nonlinear CFD model, are provided to demonstrate the efficacy of the modelling and control philosophy.

Suggested Citation

  • Farajvand, Mahdiyeh & Grazioso, Valerio & García-Violini, Demián & Ringwood, John V., 2023. "Uncertainty estimation in wave energy systems with applications in robust energy maximising control," Renewable Energy, Elsevier, vol. 203(C), pages 194-204.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:194-204
    DOI: 10.1016/j.renene.2022.12.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018390
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    2. Reduan Atan & Jamie Goggins & Stephen Nash, 2016. "A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site," Energies, MDPI, vol. 9(11), pages 1-29, November.
    3. Windt, Christian & Davidson, Josh & Ransley, Edward J. & Greaves, Deborah & Jakobsen, Morten & Kramer, Morten & Ringwood, John V., 2020. "Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter," Renewable Energy, Elsevier, vol. 146(C), pages 2499-2516.
    4. Robertson, Bryson & Bailey, Helen & Buckham, Bradley, 2019. "Resource assessment parameterization impact on wave energy converter power production and mooring loads," Applied Energy, Elsevier, vol. 244(C), pages 1-15.
    5. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.
    6. Penalba, Markel & Ringwood, John V., 2019. "A high-fidelity wave-to-wire model for wave energy converters," Renewable Energy, Elsevier, vol. 134(C), pages 367-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jincheng & Zhao, Xiaowei & Greaves, Deborah & Jin, Siya, 2023. "Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments," Applied Energy, Elsevier, vol. 341(C).
    2. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    3. Oliveira, D. & Lopes de Almeida, J.P.P.G. & Santiago, A. & Rigueiro, C., 2022. "Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter," Renewable Energy, Elsevier, vol. 199(C), pages 226-245.
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Jinming Wu & Yingxue Yao & Dongke Sun & Zhonghua Ni & Malin Göteman, 2019. "Numerical and Experimental Study of the Solo Duck Wave Energy Converter," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Penalba, Markel & Ulazia, Alain & Saénz, Jon & Ringwood, John V., 2020. "Impact of long-term resource variations on wave energy Farms: The Icelandic case," Energy, Elsevier, vol. 192(C).
    7. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2020. "Performance assessment of a two-body wave energy converter based on the Persian Gulf wave climate," Renewable Energy, Elsevier, vol. 159(C), pages 519-537.
    8. Luan, Zhengxiao & Chen, Bangqi & Jin, Ruijia & He, Guanghua & Ghassemi, Hassan & Jing, Penglin, 2024. "Validation of a numerical wave tank based on overset mesh for the wavestar-like wave energy converter in the South China Sea," Energy, Elsevier, vol. 290(C).
    9. Matthew Leary & Curtis Rusch & Zhe Zhang & Bryson Robertson, 2021. "Comparison and Validation of Hydrodynamic Theories for Wave Energy Converter Modelling," Energies, MDPI, vol. 14(13), pages 1-18, July.
    10. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    11. Tagliafierro, Bonaventura & Martínez-Estévez, Iván & Domínguez, José M. & Crespo, Alejandro J.C. & Göteman, Malin & Engström, Jens & Gómez-Gesteira, Moncho, 2022. "A numerical study of a taut-moored point-absorber wave energy converter with a linear power take-off system under extreme wave conditions," Applied Energy, Elsevier, vol. 311(C).
    12. Zabala, I. & Henriques, J.C.C. & Blanco, J.M. & Gomez, A. & Gato, L.M.C. & Bidaguren, I. & Falcão, A.F.O. & Amezaga, A. & Gomes, R.P.F., 2019. "Wave-induced real-fluid effects in marine energy converters: Review and application to OWC devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 535-549.
    13. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    14. Hayrettin Bora Karayaka & Yi-Hsiang Yu & Eduard Muljadi, 2021. "Investigations into Balancing Peak-to-Average Power Ratio and Mean Power Extraction for a Two-Body Point-Absorber Wave Energy Converter," Energies, MDPI, vol. 14(12), pages 1-24, June.
    15. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    16. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    17. Luana Gurnari & Pasquale G. F. Filianoti & Marco Torresi & Sergio M. Camporeale, 2020. "The Wave-to-Wire Energy Conversion Process for a Fixed U-OWC Device," Energies, MDPI, vol. 13(1), pages 1-25, January.
    18. Atan, Reduan & Goggins, Jamie & Nash, Stephen, 2018. "Galway Bay – The 1/4 scale wave energy test site? A detailed wave energy resource assessment and investigation of scaling factors," Renewable Energy, Elsevier, vol. 119(C), pages 217-234.
    19. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    20. Bao, Jian & Yu, Dingyong, 2024. "Hydrodynamic performance optimization of a cost-effective WEC-type floating breakwater with half-airfoil bottom," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:194-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.