IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1110-d106444.html
   My bibliography  Save this article

Characterization of Particle and Gaseous Emissions from Marine Diesel Engines with Different Fuels and Impact of After-Treatment Technology

Author

Listed:
  • Jinxi Zhou

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Song Zhou

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

  • Yuanqing Zhu

    (College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)

Abstract

The International Maritime Organization (IMO) Marine Environment Protection Committee (MEPC) and some countries have gradually strengthened the laws regulating ship exhaust emissions. The aim of this paper is to estimate the impact of an after-treatment technology exhaust gas cleaning (EGC) system on marine diesel engine emissions and the cost advantage compared to using low-sulfur fuel oil. The emission characteristics of SO 2 and particulate matter (PM) produced from high sulfur oil and low sulfur oil in a low-speed two-stroke marine diesel engine were also presented. The removal efficiency of SO 2 has been tested and the PM removal efficiency was also predicted in this study. When using high sulfur oil, the emission factor of SO 2 and PM were from 8.73 g/kWh to 11.6 g/kWh and 2.0 g/kWh to 2.7 g/kWh, respectively. These values are significantly higher than the emission values from using low sulfur oil. The fuel sulfur content (FSC) was the key factor affecting the emission factors of SO 2 and PM. The fuel change could reduce the mass emission factor of PM, which is above 90% for the total particle emission with the two fuels. When using the EGC system, the desulfurization efficiencies were above 99%. The pH values at a 25, 39, 53, and 67% load were also stabilized to be around 7.5, 7.6, 7.7, and 8, respectively. The EGC system can also capture part of the primary PM and secondary PM formed from SO 2 . The EGC system was more effective for PM of the size larger than 1 μm. Thus, according to this study, the usage of low sulfur oil and EGC will also substantially decrease the emission of currently unregulated hazardous chemical species in the exhaust gas of ships in addition to satisfying future emissions regulations of ship. Furthermore, the EGC system also had a significant cost advantage compared to using low-sulfur fuel oil.

Suggested Citation

  • Jinxi Zhou & Song Zhou & Yuanqing Zhu, 2017. "Characterization of Particle and Gaseous Emissions from Marine Diesel Engines with Different Fuels and Impact of After-Treatment Technology," Energies, MDPI, vol. 10(8), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1110-:d:106444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cha-Lee Myung & Juwon Kim & Wonwook Jang & Dongyoung Jin & Simsoo Park & Jeongmin Lee, 2015. "Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes," Energies, MDPI, vol. 8(3), pages 1-17, March.
    2. Kevin Capaldo & James J. Corbett & Prasad Kasibhatla & Paul Fischbeck & Spyros N. Pandis, 1999. "Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean," Nature, Nature, vol. 400(6746), pages 743-746, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Liu & Zhongchang Liu & Yongqiang Han & Jing Tian & Jun Wang & Jian Fang, 2018. "Experimental Investigation of the Loading Strategy of an Automotive Diesel Engine under Transient Operation Conditions," Energies, MDPI, vol. 11(5), pages 1-15, May.
    2. Kwang-Il Kim & Keon Myung Lee, 2018. "Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction," Energies, MDPI, vol. 11(5), pages 1-15, May.
    3. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of Innovative Woodchipper Speed Control Systems on Exhaust Gas Emissions and Fuel Consumption in Urban Areas," Energies, MDPI, vol. 13(13), pages 1-22, June.
    4. Zhitao Han & Dongsheng Zhao & Dekang Zheng & Xinxiang Pan & Bojun Liu & Zhiwei Han & Yu Gao & Junming Wang & Zhijun Yan, 2018. "NO Removal from Simulated Flue Gas with a NaClO 2 Mist Generated Using the Ultrasonic Atomization Method," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomson, Heather & Corbett, James J. & Winebrake, James J., 2015. "Natural gas as a marine fuel," Energy Policy, Elsevier, vol. 87(C), pages 153-167.
    2. Mark Delucchi & Don McCubbin, 2011. "External Costs of Transport in the United States," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 15, Edward Elgar Publishing.
    3. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    4. Mingfei Mu & Xinghu Li & Yong Qiu & Yang Shi, 2019. "Study on a New Gasoline Particulate Filter Structure Based on the Nested Cylinder and Diversion Channel Plug," Energies, MDPI, vol. 12(11), pages 1-19, May.
    5. Matthias Karl & Liisa Pirjola & Ari Karppinen & Jukka-Pekka Jalkanen & Martin Otto Paul Ramacher & Jaakko Kukkonen, 2020. "Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors," IJERPH, MDPI, vol. 17(3), pages 1-24, January.
    6. Aidar Khairullin & Aigul Haibullina & Alex Sinyavin & Denis Balzamov & Vladimir Ilyin & Liliya Khairullina & Veronika Bronskaya, 2022. "Heat Transfer in 3D Laguerre–Voronoi Open-Cell Foams under Pulsating Flow," Energies, MDPI, vol. 15(22), pages 1-26, November.
    7. Morten Simonsen & Hans Jakob Walnum & Stefan Gössling, 2018. "Model for Estimation of Fuel Consumption of Cruise Ships," Energies, MDPI, vol. 11(5), pages 1-29, April.
    8. Shubin Bai & Yuanqiao Wen & Li He & Yiming Liu & Yan Zhang & Qi Yu & Weichun Ma, 2020. "Single-Vessel Plume Dispersion Simulation: Method and a Case Study Using CALPUFF in the Yantian Port Area, Shenzhen (China)," IJERPH, MDPI, vol. 17(21), pages 1-29, October.
    9. Mingfei Mu & Jonas Sjöblom & Henrik Ström & Xinghu Li, 2019. "Analysis of the Flow Field from Connection Cones to Monolith Reactors," Energies, MDPI, vol. 12(3), pages 1-20, January.
    10. Qinyu Cheng & Xiaotong Wang & Dongsheng Chen & Yizhe Ma & Ying Zhao & Jianghong Hao & Xiurui Guo & Jianlei Lang & Ying Zhou, 2023. "Impact of Ship Emissions on Air Quality in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA): With a Particular Focus on the Role of Onshore Wind," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    11. Mingfei Mu & Jonas Sjöblom & Nikhil Sharma & Henrik Ström & Xinghu Li, 2019. "Experimental Study on the Flow Field of Particles Deposited on a Gasoline Particulate Filter," Energies, MDPI, vol. 12(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1110-:d:106444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.