IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004531.html
   My bibliography  Save this article

Novel reference condition independent method for estimating performance for PV modules based on double-diode model

Author

Listed:
  • Li, Guorong
  • Zhang, Yunpeng
  • Zhou, Hai
  • Wu, Ji
  • Sun, Shumin
  • You, Daning
  • Zhang, Yuanpeng

Abstract

The traditional methods for performance estimation mainly include two steps: determine the model parameters under reference condition and calculate the model parameters at varying operating conditions through transformation equations. These methods have the disadvantages of being influenced by the selection of reference condition. A novel reference condition independent method is proposed based on double-diode model (DDM) for parameter calculation and performance estimation at varying operating conditions for photovoltaic (PV) modules. In the proposed method, a new set of transformation equations is reconstructed according to the dependence of physical parameters in DDM on irradiance and temperature. All coefficients in the proposed transformation equations are independent of the information under reference condition and applicable to all varying operating conditions, which eliminates the influence of reference condition. The coefficients are optimized by fitting measured I–V data at varying operating conditions using guaranteed convergence particle swarm optimization technology, and used for model parameters calculation at varying operating conditions. Then the output property of PV module under any operating condition can be determined independently, first against the reference condition and then against the model parameters under reference condition. The accuracy and applicability of proposed method is validated by massive experimental data for six different types of PV modules under wide range of operating conditions. Moreover, three traditional methods are selected to compare with the proposed method. The proposed method shows better accuracy in I–V, P–V curve and maximum power point estimation under different irradiance and temperature conditions, which can be further used to predict the output power of PV system.

Suggested Citation

  • Li, Guorong & Zhang, Yunpeng & Zhou, Hai & Wu, Ji & Sun, Shumin & You, Daning & Zhang, Yuanpeng, 2024. "Novel reference condition independent method for estimating performance for PV modules based on double-diode model," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004531
    DOI: 10.1016/j.renene.2024.120388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ranawade, Vishal & Nalwa, Kanwar Singh, 2023. "Multilayered PCMs-based cooling solution for photovoltaic modules: Modelling and experimental study," Renewable Energy, Elsevier, vol. 216(C).
    2. Dehghanzadeh, Ahmad & Farahani, Gholamreza & Maboodi, Mohsen, 2017. "A novel approximate explicit double-diode model of solar cells for use in simulation studies," Renewable Energy, Elsevier, vol. 103(C), pages 468-477.
    3. Martin Ćalasan & Mujahed Al-Dhaifallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Comparative Analysis of Different Iterative Methods for Solving Current–Voltage Characteristics of Double and Triple Diode Models of Solar Cells," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    4. Rabeh Abbassi & Salem Saidi & Shabana Urooj & Bilal Naji Alhasnawi & Mohamad A. Alawad & Manoharan Premkumar, 2023. "An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    5. Chennoufi, Khalid & Ferfra, Mohammed & Mokhlis, Mohcine, 2021. "An accurate modelling of Photovoltaic modules based on two-diode model," Renewable Energy, Elsevier, vol. 167(C), pages 294-305.
    6. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    7. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    8. Tifidat, Kawtar & Maouhoub, Noureddine, 2023. "An efficient method for predicting PV modules performance based on the two-diode model and adaptable to the single-diode model," Renewable Energy, Elsevier, vol. 216(C).
    9. Schuster, Christian Stefano & Koc, Mehmet & Yerci, Selcuk, 2022. "Analytic modelling of multi-junction solar cells via multi-diodes," Renewable Energy, Elsevier, vol. 184(C), pages 1033-1042.
    10. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    11. Hetita, Ibrahim & Zalhaf, Amr S. & Mansour, Diaa-Eldin A. & Han, Yang & Yang, Ping & Wang, Congling, 2022. "Modeling and protection of photovoltaic systems during lightning strikes: A review," Renewable Energy, Elsevier, vol. 184(C), pages 134-148.
    12. Yousri, Dalia & Thanikanti, Sudhakar Babu & Allam, Dalia & Ramachandaramurthy, Vigna K. & Eteiba, M.B., 2020. "Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters," Energy, Elsevier, vol. 195(C).
    13. Meng, Zhuo & Zhao, Yiman & Tang, Shiqing & Sun, Yize, 2020. "An efficient datasheet-based parameters extraction method for two-diode photovoltaic cell and cells model," Renewable Energy, Elsevier, vol. 153(C), pages 1174-1182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    2. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    3. Ridha, Hussein Mohammed & Hizam, Hashim & Mirjalili, Seyedali & Othman, Mohammad Lutfi & Ya'acob, Mohammad Effendy & Ahmadipour, Masoud, 2022. "Parameter extraction of single, double, and three diodes photovoltaic model based on guaranteed convergence arithmetic optimization algorithm and modified third order Newton Raphson methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    6. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    7. Das, Abhik Kumar & Singh, Rhythm, 2024. "Explicit representation of S-shaped and standard V–I curve of illuminated solar cell," Renewable Energy, Elsevier, vol. 231(C).
    8. Radouane Aalloul & Abdellah Elaissaoui & Mourad Benlattar & Rhma Adhiri, 2023. "Emerging Parameters Extraction Method of PV Modules Based on the Survival Strategies of Flying Foxes Optimization (FFO)," Energies, MDPI, vol. 16(8), pages 1-24, April.
    9. Nandhini Kullampalayam Murugaiyan & Kumar Chandrasekaran & Magdalin Mary Devapitchai & Tomonobu Senjyu, 2024. "Parameter Estimation of Three-Diode Photovoltaic Model Using Reinforced Learning-Based Parrot Optimizer with an Adaptive Secant Method," Sustainability, MDPI, vol. 16(23), pages 1-34, December.
    10. Mostafa Elshahed & Ali M. El-Rifaie & Mohamed A. Tolba & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2022. "An Innovative Hunter-Prey-Based Optimization for Electrically Based Single-, Double-, and Triple-Diode Models of Solar Photovoltaic Systems," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    11. Omnia S. Elazab & Hany M. Hasanien & Ibrahim Alsaidan & Almoataz Y. Abdelaziz & S. M. Muyeen, 2020. "Parameter Estimation of Three Diode Photovoltaic Model Using Grasshopper Optimization Algorithm," Energies, MDPI, vol. 13(2), pages 1-15, January.
    12. Papul Changmai & Sunil Deka & Shashank Kumar & Thanikanti Sudhakar Babu & Belqasem Aljafari & Benedetto Nastasi, 2022. "A Critical Review on the Estimation Techniques of the Solar PV Cell’s Unknown Parameters," Energies, MDPI, vol. 15(19), pages 1-20, September.
    13. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    14. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    15. Aurel Gontean & Septimiu Lica & Szilard Bularka & Roland Szabo & Dan Lascu, 2017. "A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation," Energies, MDPI, vol. 11(1), pages 1-21, December.
    16. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    17. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    18. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Sameh S. Askar & Mohamed Abouhawwash, 2021. "Efficient Ranking-Based Whale Optimizer for Parameter Extraction of Three-Diode Photovoltaic Model: Analysis and Validations," Energies, MDPI, vol. 14(13), pages 1-20, June.
    19. Xianping Zhu & Shaowu Li & Jingxun Fan, 2023. "An Overall Linearized Modeling Method and Associated Delay Time Model for the PV System," Energies, MDPI, vol. 16(10), pages 1-37, May.
    20. Šlamberger, Jan & Schwark, Michael & Van Aken, Bas B. & Virtič, Peter, 2018. "Comparison of potential-induced degradation (PID) of n-type and p-type silicon solar cells," Energy, Elsevier, vol. 161(C), pages 266-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.