IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp745-760.html
   My bibliography  Save this article

An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm

Author

Listed:
  • Blaifi, Sid-ali
  • Moulahoum, Samir
  • Taghezouit, Bilal
  • Saim, Abdelhakim

Abstract

An improved dynamic modeling of PV cell/modules based on automatic parameters extraction is proposed in this paper. For the sake of clarity, three models are compared in this study including, Single Diode (SDM), Double Diode (DDM) and the empirical model developed by Sandia National Laboratory (SANDIA). The use of nominal parameters or the values given by manufacturer in both SDM and DDM diode saturation current I0 and photo-generation current Iph equations can engender a significant error depending on the operating conditions and the consumed lifetime. Hence, these values can be handled as model parameters, and can be adjusted using automatic parameters extraction algorithms. Moreover, parameters based on static extraction methods (with fixed irradiation and temperature) namely, Rs, Rsh and n do not give satisfactory results under variable irradiation and temperature, which involve the use of a dynamic adjustment method to improve these parameters. In this way, static parameters extraction using genetic algorithm (GA) is proposed as a first stage for both SDM and DDM. After that, a dynamic parameters extraction based on the Levenberg-Marquardt algorithm (LMA) has been employed in the purpose to adjust some nominal parameters provided by the literature and the manufacturer, and those given by the static method. The idea consists of considering the PV module and the MPPT as a single system with dynamic inputs (irradiation and temperature) and output (Impp, Vmpp and Pmpp) to minimize the error between the measured and the simulated outputs. The validity of the proposed approach is compared with dynamic LMA models, nominal parameters based models, and the models based on static GA extracted parameters under of different weather conditions and out-door measurements. The improved models show promising results in terms of agreement with real data.

Suggested Citation

  • Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:745-760
    DOI: 10.1016/j.renene.2018.12.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811831485X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    2. Mellit, A. & Sağlam, S. & Kalogirou, S.A., 2013. "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, Elsevier, vol. 60(C), pages 71-78.
    3. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    4. Blaifi, S. & Moulahoum, S. & Colak, I. & Merrouche, W., 2016. "An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications," Applied Energy, Elsevier, vol. 169(C), pages 888-898.
    5. Patel, Sanjaykumar J. & Panchal, Ashish K. & Kheraj, Vipul, 2014. "Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm," Applied Energy, Elsevier, vol. 119(C), pages 384-393.
    6. Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
    7. Oliva, Diego & Cuevas, Erik & Pajares, Gonzalo, 2014. "Parameter identification of solar cells using artificial bee colony optimization," Energy, Elsevier, vol. 72(C), pages 93-102.
    8. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    9. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    10. Kichou, Sofiane & Silvestre, Santiago & Guglielminotti, Letizia & Mora-López, Llanos & Muñoz-Cerón, Emilio, 2016. "Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification," Renewable Energy, Elsevier, vol. 99(C), pages 270-279.
    11. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    12. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    13. Jieming Ma & T. O. Ting & Ka Lok Man & Nan Zhang & Sheng-Uei Guan & Prudence W. H. Wong, 2013. "Parameter Estimation of Photovoltaic Models via Cuckoo Search," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, August.
    14. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2007. "A novel model for photovoltaic array performance prediction," Applied Energy, Elsevier, vol. 84(12), pages 1187-1198, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    2. Mariana Durango-Flórez & Daniel González-Montoya & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja, 2022. "PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    3. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    5. HaiYan Jiang & Qinghui Song & Kuidong Gao & QingJun Song & XieGuang Zhao, 2020. "Rule-based expert system to assess caving output ratio in top coal caving," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    6. Li, Guorong & Zhang, Yunpeng & Zhou, Hai & Wu, Ji & Sun, Shumin & You, Daning & Zhang, Yuanpeng, 2024. "Novel reference condition independent method for estimating performance for PV modules based on double-diode model," Renewable Energy, Elsevier, vol. 226(C).
    7. Piotr Życzkowski & Marek Borowski & Rafał Łuczak & Zbigniew Kuczera & Bogusław Ptaszyński, 2020. "Functional Equations for Calculating the Properties of Low-GWP R1234ze(E) Refrigerant," Energies, MDPI, vol. 13(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    2. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    3. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    4. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    5. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    6. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    7. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    8. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    10. Huawen Sheng & Chunquan Li & Hanming Wang & Zeyuan Yan & Yin Xiong & Zhenting Cao & Qianying Kuang, 2019. "Parameters Extraction of Photovoltaic Models Using an Improved Moth-Flame Optimization," Energies, MDPI, vol. 12(18), pages 1-23, September.
    11. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    14. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    15. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    16. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    17. Lin, Xiankun & Wu, Yuhang, 2020. "Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture," Energy, Elsevier, vol. 196(C).
    18. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    19. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    20. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:745-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.