IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002793.html
   My bibliography  Save this article

The implications of using organic-rich industrial wastewater as biomethanation feedstocks

Author

Listed:
  • Mancini, Enrico
  • Tian, Hailin
  • Angelidaki, Irini
  • Fotidis, Ioannis A.

Abstract

Acetic acid and methanol are found in wastewater of many industries and they can be excellent substrates for anaerobic digestion (AD). However, the research determining the efficient use of these wastewater as AD substrates and evaluating their impact on the AD process is scarce. The current study aims to assess the use of acetic acid-rich (WW-HAc) and methanol-rich (WW–MeOH) wastewater for methane production by evaluating (1) their effect on the AD process pH, (2) their toxicity on a typical non-acclimated methanogenic inoculum, (3) their effect on the methanogenic activity and (4) their effect on the acetate metabolic pathway when co-digested in continuous, manure-based anaerobic reactors. The pH experimental results showed that an organic loading (OL) of 5.97 g VS L−1 of WW-HAc lowered the pH below the optimum range for AD (6.5–8.5). The toxicity test on AD process showed that IC50 (half-maximal inhibitory concentration) was 6.9 and 14.31 g VS L−1 for WW-HAc and WW-MeOH, respectively. In the continuous reactors experiment, high organic loading rates of up to 5.7 and 9.7 g VS L−1 d−1 for WW-HAc and WW-MeOH, respectively, where achieved under steady state (i.e., less than 10% variation in production), with 79% and 87%, respectively of the maximum theoretical methane production. Radioisotopic analysis showed that aceticlastic methanogenesis was dominant in both reactors. Overall, the assessment of using acetic acid-rich and methanol-rich wastewater as substrates, revealed significant production benefits for the AD process together with operational restrictions that must be followed to prevent toxicities or overloading effects.

Suggested Citation

  • Mancini, Enrico & Tian, Hailin & Angelidaki, Irini & Fotidis, Ioannis A., 2021. "The implications of using organic-rich industrial wastewater as biomethanation feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002793
    DOI: 10.1016/j.rser.2021.110987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chmielniak, Tomasz & Sciazko, Marek, 2003. "Co-gasification of biomass and coal for methanol synthesis," Applied Energy, Elsevier, vol. 74(3-4), pages 393-403, March.
    2. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    3. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ting & Shen, Dongsheng & Jin, Yiying & Li, Hailong & Yu, Zhixin & Feng, Huajun & Long, Yuyang & Yin, Jun, 2017. "Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model," Applied Energy, Elsevier, vol. 208(C), pages 666-677.
    2. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    3. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    5. Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
    6. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
    8. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    9. Wenzhi Xu & Yongqun Zhu & Xie Wang & Lei Ji & Hong Wang & Li Yao & Chaowen Lin, 2021. "The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    10. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    11. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Jakub Frankowski & Maciej Zaborowicz & Jacek Dach & Wojciech Czekała & Jacek Przybył, 2020. "Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Dee," Energies, MDPI, vol. 13(11), pages 1-15, June.
    13. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    14. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin, 2015. "Biogas production in Poland—Current state, potential and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 686-695.
    18. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    19. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    20. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.