IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2949-d368932.html
   My bibliography  Save this article

Cost-Aware Design and Simulation of Electrical Energy Systems

Author

Listed:
  • Yukai Chen

    (Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Torino, Italy)

  • Sara Vinco

    (Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Torino, Italy)

  • Donkyu Baek

    (School of Electronics Engineering, Chungbuk National University, Cheongju 28644, Korea)

  • Stefano Quer

    (Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Torino, Italy)

  • Enrico Macii

    (Interuniversity Department of Regional and Urban Studies and Planning (DIST), Politecnico di Torino, 10129 Torino, Italy)

  • Massimo Poncino

    (Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Torino, Italy)

Abstract

One fundamental dimension in the design of an electrical energy system (EES) is the economic analysis of the possible design alternatives, in order to ensure not just the maximization of the energy output but also the return on the investment and the possible profits. Since the energy output and the economic figures of merit are intertwined, for an accurate analysis it is necessary to analyze these two aspects of the problem concurrently, in order to define effective energy management policies. This paper achieves that objective by tracking and measuring the energy efficiency and the cost effectiveness in a single modular framework. The two aspects are modeled separately, through the definition of dedicated simulation layers governed by dedicated virtual buses that elaborate and manage the information and energy flows. Both layers are simulated concurrently within the same simulation infrastructure based on SystemC-AMS, so as to recreate at runtime the mutual influence of the two aspects, while allowing the use of different discrete time scales for the two layers. Thanks to the tight coupling provided by the single simulation engine, our method enables a quick estimation of various cost metrics (net costs, annualized costs, and profits) of any configuration of EES under design, via an informed exploration of the alternatives. To prove the effectiveness of this approach, we apply the proposed strategy to two EES case studies, we explored various management strategies and the presence of different types and numbers of power sources and energy storage devices in the EES. The analysis proved to allow the identification of the optimal profitable solutions, thereby improving the standard design and simulation flow of EES.

Suggested Citation

  • Yukai Chen & Sara Vinco & Donkyu Baek & Stefano Quer & Enrico Macii & Massimo Poncino, 2020. "Cost-Aware Design and Simulation of Electrical Energy Systems," Energies, MDPI, vol. 13(11), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2949-:d:368932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    2. Hussein Jumma Jabir & Jiashen Teh & Dahaman Ishak & Hamza Abunima, 2018. "Impacts of Demand-Side Management on Electrical Power Systems: A Review," Energies, MDPI, vol. 11(5), pages 1-19, April.
    3. Donkyu Baek & Yukai Chen & Naehyuck Chang & Enrico Macii & Massimo Poncino, 2020. "Optimal Battery Sizing for Electric Truck Delivery," Energies, MDPI, vol. 13(3), pages 1-15, February.
    4. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    5. Holger C. Hesse & Rodrigo Martins & Petr Musilek & Maik Naumann & Cong Nam Truong & Andreas Jossen, 2017. "Economic Optimization of Component Sizing for Residential Battery Storage Systems," Energies, MDPI, vol. 10(7), pages 1-19, June.
    6. Shakti Singh & Prachi Chauhan & Mohd Asim Aftab & Ikbal Ali & S. M. Suhail Hussain & Taha Selim Ustun, 2020. "Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV," Energies, MDPI, vol. 13(5), pages 1-23, March.
    7. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    8. Ramli, Makbul A.M. & Hiendro, Ayong & Al-Turki, Yusuf A., 2016. "Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia," Renewable Energy, Elsevier, vol. 91(C), pages 374-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Pontes Luz & Rodrigo Amaro e Silva, 2021. "Modeling Energy Communities with Collective Photovoltaic Self-Consumption: Synergies between a Small City and a Winery in Portugal," Energies, MDPI, vol. 14(2), pages 1-26, January.
    2. Leszek Kasprzyk & Andrzej Tomczewski & Robert Pietracho & Agata Mielcarek & Zbigniew Nadolny & Krzysztof Tomczewski & Grzegorz Trzmiel & Juan Alemany, 2020. "Optimization of a PV-Wind Hybrid Power Supply Structure with Electrochemical Storage Intended for Supplying a Load with Known Characteristics," Energies, MDPI, vol. 13(22), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    2. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    3. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    4. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    5. Despeghel, Jolien & Tant, Jeroen & Driesen, Johan, 2024. "Convex optimization of PV-battery system sizing and operation with non-linear loss models," Applied Energy, Elsevier, vol. 353(PA).
    6. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Altun, Ayse Fidan & Kilic, Muhsin, 2020. "Design and performance evaluation based on economics and environmental impact of a PV-wind-diesel and battery standalone power system for various climates in Turkey," Renewable Energy, Elsevier, vol. 157(C), pages 424-443.
    8. Mulleriyawage, U.G.K. & Shen, W.X., 2020. "Optimally sizing of battery energy storage capacity by operational optimization of residential PV-Battery systems: An Australian household case study," Renewable Energy, Elsevier, vol. 160(C), pages 852-864.
    9. Khalilpour, Kaveh R. & Lusis, Peter, 2020. "Network capacity charge for sustainability and energy equity: A model-based analysis," Applied Energy, Elsevier, vol. 266(C).
    10. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    11. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    12. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    14. Antans Sauhats & Andrejs Utans & Jurijs Silinevics & Gatis Junghans & Dmitrijs Guzs, 2021. "Enhancing Power System Frequency with a Novel Load Shedding Method Including Monitoring of Synchronous Condensers’ Power Injections," Energies, MDPI, vol. 14(5), pages 1-21, March.
    15. Sergey Obukhov & Ahmed Ibrahim & Mohamed A. Tolba & Ali M. El-Rifaie, 2019. "Power Balance Management of an Autonomous Hybrid Energy System Based on the Dual-Energy Storage," Energies, MDPI, vol. 12(24), pages 1-15, December.
    16. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    17. Valdes, Javier & Poque González, Axel Bastián & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2020. "Unveiling the potential for combined heat and power in Chilean industry - A policy perspective," Energy Policy, Elsevier, vol. 140(C).
    18. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    19. Johannes Karlsson & Anders Grauers, 2023. "Agent-Based Investigation of Charger Queues and Utilization of Public Chargers for Electric Long-Haul Trucks," Energies, MDPI, vol. 16(12), pages 1-25, June.
    20. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2949-:d:368932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.