IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2843-d366725.html
   My bibliography  Save this article

Modeling of Failure Probability for Reliability and Component Reuse of Electric and Electronic Equipment

Author

Listed:
  • Massimo Conti

    (Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60126 Ancona, Italy)

  • Simone Orcioni

    (Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60126 Ancona, Italy)

Abstract

Recently, the concept of “circular economy”, the design for end-of-life, the problem of reduction of waste of electronic and electrical equipment are becoming more and more important. The design of electronic systems for end-of-life considers the possibility of their repair, reuse and recycle, in order to reduce waste. This work proposes a new accurate model of failure probability density, that includes the failure probability of a used component in new equipment. The model has been tested, in conjunction with the International Electrotechnical Commission and Telcordia standard, in real industrial production. Eight years of historical faults have been analyzed and used to derive the fault models of the components. The model and analysis have been used for the analysis of real electronic products. The reuse of components could make an improvement to the reliability of the equipment.

Suggested Citation

  • Massimo Conti & Simone Orcioni, 2020. "Modeling of Failure Probability for Reliability and Component Reuse of Electric and Electronic Equipment," Energies, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2843-:d:366725
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    2. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    3. Danny Pigini & Massimo Conti, 2017. "NFC-Based Traceability in the Food Chain," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    4. Keshav Parajuly & Henrik Wenzel, 2017. "Product Family Approach in E-Waste Management: A Conceptual Framework for Circular Economy," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Liu & Qiu Tang & Wei Qiu & Jun Ma & Junfeng Duan, 2021. "Probability-Based Failure Evaluation for Power Measuring Equipment," Energies, MDPI, vol. 14(12), pages 1-16, June.
    2. A. M. Sakura R. H. Attanayake & R. M. Chandima Ratnayake, 2023. "Digitalization of Distribution Transformer Failure Probability Using Weibull Approach towards Digital Transformation of Power Distribution Systems," Future Internet, MDPI, vol. 15(2), pages 1-17, January.
    3. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio & Wu, Shaomin, 2023. "Maintenance policies and models: A bibliometric and literature review of strategies for reuse and remanufacturing," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Jessika Luth Richter & Sahra Svensson‐Hoglund & Carl Dalhammar & Jennifer D. Russell & Åke Thidell, 2023. "Taking stock for repair and refurbishing: A review of harvesting of spare parts from electrical and electronic products," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 868-881, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    6. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    7. Szymkowiak, Magdalena & Iwińska, Maria, 2016. "Characterizations of Discrete Weibull related distributions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 41-48.
    8. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    9. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    10. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    12. Shashi & Rajwinder Singh & Piera Centobelli & Roberto Cerchione, 2018. "Evaluating Partnerships in Sustainability-Oriented Food Supply Chain: A Five-Stage Performance Measurement Model," Energies, MDPI, vol. 11(12), pages 1-18, December.
    13. Horațiu Vermeșan & Ancuța-Elena Tiuc & Marius Purcar, 2019. "Advanced Recovery Techniques for Waste Materials from IT and Telecommunication Equipment Printed Circuit Boards," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    14. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    16. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    17. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    20. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    More about this item

    Keywords

    WEEE; reliability; reuse;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2843-:d:366725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.