IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2812-d366104.html
   My bibliography  Save this article

Coordinated Control of Active and Reactive Power Compensation for Voltage Regulation with Enhanced Disturbance Rejection Using Repetitive Vector-Control

Author

Listed:
  • Felipe J. Zimann

    (Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil)

  • Eduardo V. Stangler

    (Department of Electrical Engineering, Universidade Federal de Pernambuco, Recife 50740-530, Brazil)

  • Francisco A. S. Neves

    (Department of Electrical Engineering, Universidade Federal de Pernambuco, Recife 50740-530, Brazil)

  • Alessandro L. Batschauer

    (Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil)

  • Marcello Mezaroba

    (Department of Electrical Engineering, Santa Catarina State University, Joinville 89219-710, Brazil)

Abstract

Voltage profile is one of many aspects that affect power quality in low-voltage distribution feeders. Weak grids have a typically high line impedance which results in remarkable voltage drops. Distribution grids generally have a high R/X ratio, which makes voltage regulation with reactive power compensation less effective than in high-voltage grids. Moreover, these networks are more susceptible to unbalance and harmonic voltage disturbances. This paper proposes an enhanced coordinated control of active and reactive power injected in a distribution grid for voltage regulation. Voltage drop mitigation was evaluated with power injection based on local features, such loads and disturbances of each connection. In order to ensure disturbances rejection like harmonic components in the grid voltages, a repetitive vector-control scheme was used. The injection of coordinated active and reactive power with the proposed control algorithm was verified through simulations and experiments, demonstrating that it is a promising alternative for voltage regulation in weak and low-voltage networks subject to inherent harmonic distortion.

Suggested Citation

  • Felipe J. Zimann & Eduardo V. Stangler & Francisco A. S. Neves & Alessandro L. Batschauer & Marcello Mezaroba, 2020. "Coordinated Control of Active and Reactive Power Compensation for Voltage Regulation with Enhanced Disturbance Rejection Using Repetitive Vector-Control," Energies, MDPI, vol. 13(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2812-:d:366104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2812/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2812/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Alzahrani & Hussain Alharthi & Muhammad Khalid, 2019. "Minimization of Power Losses through Optimal Battery Placement in a Distributed Network with High Penetration of Photovoltaics," Energies, MDPI, vol. 13(1), pages 1-16, December.
    2. Zhaoxu Luo & Mei Su & Jian Yang & Yao Sun & Xiaochao Hou & Josep M. Guerrero, 2016. "A Repetitive Control Scheme Aimed at Compensating the 6 k + 1 Harmonics for a Three-Phase Hybrid Active Filter," Energies, MDPI, vol. 9(10), pages 1-17, September.
    3. Fabio Mottola & Daniela Proto & Pietro Varilone & Paola Verde, 2020. "Planning of Distributed Energy Storage Systems in μGrids Accounting for Voltage Dips," Energies, MDPI, vol. 13(2), pages 1-20, January.
    4. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    5. Jose Luis Torres-Moreno & Antonio Gimenez-Fernandez & Manuel Perez-Garcia & Francisco Rodriguez, 2018. "Energy Management Strategy for Micro-Grids with PV-Battery Systems and Electric Vehicles," Energies, MDPI, vol. 11(3), pages 1-13, February.
    6. Andrea Mazza & Hamidreza Mirtaheri & Gianfranco Chicco & Angela Russo & Maurizio Fantino, 2019. "Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-20, December.
    7. Jaber Alshehri & Muhammad Khalid & Ahmed Alzahrani, 2019. "An Intelligent Battery Energy Storage-Based Controller for Power Quality Improvement in Microgrids," Energies, MDPI, vol. 12(11), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Hou & Jian Wu & Huihui Song & Yanbin Qu & Dianguo Xu, 2020. "Applying Directly Modified RDFT Method in Active Power Filter for the Power Quality Improvement of the Weak Power Grid," Energies, MDPI, vol. 13(18), pages 1-20, September.
    2. Chengbi Zeng & Sudan Li & Hanwen Wang & Hong Miao, 2021. "A Frequency Adaptive Scheme Based on Newton Structure of PRRC for LCL-Type Inverter Connected with Weak Grid," Energies, MDPI, vol. 14(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meysam Shamshiri & Chin Kim Gan & Junainah Sardi & Mau Teng Au & Wei Hown Tee, 2020. "Design of Battery Storage System for Malaysia Low Voltage Distribution Network with the Presence of Residential Solar Photovoltaic System," Energies, MDPI, vol. 13(18), pages 1-20, September.
    2. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    3. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    4. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    5. Sun, Li & Walker, Paul & Feng, Kaiwu & Zhang, Nong, 2018. "Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter," Energy, Elsevier, vol. 142(C), pages 436-446.
    6. Quentin Bellec & Jean-Claude Le Claire & Mohamed Fouad Benkhoris & Peyofougou Coulibaly, 2021. "A New Robust Digital Non-Linear Control for Power Factor Correction—Arc Welding Applications," Energies, MDPI, vol. 14(4), pages 1-25, February.
    7. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    8. Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
    9. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    10. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    11. Tao, Laifa & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou & Noktehdan, Azadeh, 2017. "Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process," Applied Energy, Elsevier, vol. 202(C), pages 138-152.
    12. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).
    13. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    14. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    15. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    16. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    17. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    18. Lybbert, M. & Ghaemi, Z. & Balaji, A.K. & Warren, R., 2021. "Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Ruan, Jiageng & Walker, Paul D. & Watterson, Peter A. & Zhang, Nong, 2016. "The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle," Applied Energy, Elsevier, vol. 183(C), pages 1240-1258.
    20. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2812-:d:366104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.