Research on the Hybrid Recommendation Method of Retail Electricity Price Package Based on Power User Characteristics and Multi-Attribute Utility in China
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Diego M. Jiménez-Bravo & Javier Pérez-Marcos & Daniel H. De la Iglesia & Gabriel Villarrubia González & Juan F. De Paz, 2019. "Multi-Agent Recommendation System for Electrical Energy Optimization and Cost Saving in Smart Homes," Energies, MDPI, vol. 12(7), pages 1-22, April.
- Prajwal Khadgi & Lihui Bai, 2018. "A simulation study for residential electricity user behavior under dynamic variable pricing with demand charge," IISE Transactions, Taylor & Francis Journals, vol. 50(8), pages 699-710, August.
- Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
- Guang, Fengtao & He, Yongxiu & Wen, Le, 2019. "Impacts of hybrid time-varying tariffs on residential electricity demand: The case of Zhejiang Province," Utilities Policy, Elsevier, vol. 61(C).
- Bae, Mungyu & Kim, Hwantae & Kim, Eugene & Chung, Albert Yongjoon & Kim, Hwangnam & Roh, Jae Hyung, 2014. "Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system," Applied Energy, Elsevier, vol. 133(C), pages 252-273.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sen Guo & Wenyue Zhang & Xiao Gao, 2020. "Business Risk Evaluation of Electricity Retail Company in China Using a Hybrid MCDM Method," Sustainability, MDPI, vol. 12(5), pages 1-21, March.
- Yongxiu He & Meiyan Wang & Fengtao Guang, 2019. "Applicability Evaluation of China’s Retail Electricity Price Package Combining Data Envelopment Analysis and a Cloud Model," Energies, MDPI, vol. 13(1), pages 1-21, December.
- Wei, Wei & Han, Ying & Abedin, Mohammad Zoynul & Ma, Jingjing & Chai, Shanglei, 2023. "Empirical study on the technical efficiency and total factor productivity of power industry: Evidence from Chinese provinces," Energy Economics, Elsevier, vol. 128(C).
- Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2022. "Efficiency of resilient three-part tariff pricing schemes in residential power markets," Energy, Elsevier, vol. 239(PD).
- Lin, Boqiang & Wu, Wei, 2017. "Cost of long distance electricity transmission in China," Energy Policy, Elsevier, vol. 109(C), pages 132-140.
- Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Xu, Xiandong & Yu, Xiaodan, 2016. "Optimal day-ahead scheduling of integrated urban energy systems," Applied Energy, Elsevier, vol. 180(C), pages 1-13.
- Ming, Zeng & Ping, Zhang & Shunkun, Yu & Hui, Liu, 2017. "Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 768-774.
- Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.
- Cheng, Chuntian & Chen, Fu & Li, Gang & Ristić, Bora & Mirchi, Ali & Qiyu, Tu & Madani, Kaveh, 2018. "Reform and renewables in China: The architecture of Yunnan's hydropower dominated electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 682-693.
- Sun, Kege & Wu, Libo, 2020. "Efficiency distortion of the power generation sector under the dual regulation of price and quantity in China," Energy Economics, Elsevier, vol. 86(C).
- Qin, Quande & Liu, Yuan & Huang, Jia-Ping, 2020. "A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry," Energy Economics, Elsevier, vol. 92(C).
- Jun Dong & Huijuan Huo & Sen Guo, 2016. "Demand Side Management Performance Evaluation for Commercial Enterprises," Sustainability, MDPI, vol. 8(10), pages 1-23, October.
- Fatih Cemil Ozbugday & Onder Ozgur, 2018. "Advanced Metering Infrastructure and Distributed Generation: Panel Causality Evidence from New Zealand," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 125-137.
- She, Zhen-Yu & Meng, Gang & Xie, Bai-Chen & O'Neill, Eoghan, 2020. "The effectiveness of the unbundling reform in China’s power system from a dynamic efficiency perspective," Applied Energy, Elsevier, vol. 264(C).
- Guo, Hongye & Davidson, Michael R. & Chen, Qixin & Zhang, Da & Jiang, Nan & Xia, Qing & Kang, Chongqing & Zhang, Xiliang, 2020. "Power market reform in China: Motivations, progress, and recommendations," Energy Policy, Elsevier, vol. 145(C).
- Bertrand Rioux, Philipp Galkin, Frederic Murphy, and Axel Pierru, 2017. "How do Price Caps in Chinas Electricity Sector Impact the Economics of Coal, Power and Wind? Potential Gains from Reforms," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
- Seongjoon Park & Hwangnam Kim, 2019. "DAG-Based Distributed Ledger for Low-Latency Smart Grid Network," Energies, MDPI, vol. 12(18), pages 1-22, September.
- Yuzhuo Zhang & Xingang Zhao & Yi Zuo & Lingzhi Ren & Ling Wang, 2017. "The Development of the Renewable Energy Power Industry under Feed-In Tariff and Renewable Portfolio Standard: A Case Study of China’s Photovoltaic Power Industry," Sustainability, MDPI, vol. 9(4), pages 1-23, March.
- Ioannis P. Panapakidis & Nikolaos Koltsaklis & Georgios C. Christoforidis, 2020. "A Novel Integrated Profit Maximization Model for Retailers under Varied Penetration Levels of Photovoltaic Systems," Energies, MDPI, vol. 14(1), pages 1-27, December.
- Yi Liang & Dongxiao Niu & Ye Cao & Wei-Chiang Hong, 2016. "Analysis and Modeling for China’s Electricity Demand Forecasting Using a Hybrid Method Based on Multiple Regression and Extreme Learning Machine: A View from Carbon Emission," Energies, MDPI, vol. 9(11), pages 1-22, November.
More about this item
Keywords
retail electricity market; the recommendation of retail electricity price packages; characteristics of power users; the multi-attribute utility of price package;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2693-:d:363465. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.