IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221025779.html
   My bibliography  Save this article

Efficiency of resilient three-part tariff pricing schemes in residential power markets

Author

Listed:
  • Tsao, Yu-Chung
  • Thanh, Vo-Van
  • Lu, Jye-Chyi

Abstract

Rising penetrations of renewable distributed generations (RDG) units at the demand side in residential power markets imply a reduction in the revenue of a power plant. In addition, the intermittent nature of RDG units requires the power plant to maintain the generation capacity to meet the demand during the intermittent periods. This paper derived two resilient three-part tariff (TPT) pricing policies based on either the time-of-use (ToU) pricing or the increasing-block pricing (IBP) schemes. The proposed pricing policies aim to maximize the power plant profit and the social welfare of users (consumers and prosumers) and recover the losses related to the uncertainties in energy supply and demand. To handle hybrid uncertainties in demand and capacity, a novel mixed type-2 fuzzy stochastic approach based on the integration of a type-2 fuzzy set and scenario-based stochastic programming is proposed. The application of the proposed model was examined using an empirical case study. Our results indicated that the resilient TPT with ToU could help power plants improve their profits by approximately 41.14% compared to those earned through the traditional two-part tariff. Furthermore, a decision matrix is proposed to allow the power plant to visualize an appropriate tariff plan amongst various options accurately.

Suggested Citation

  • Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2022. "Efficiency of resilient three-part tariff pricing schemes in residential power markets," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025779
    DOI: 10.1016/j.energy.2021.122329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solano, J.C. & Brito, M.C. & Caamaño-Martín, E., 2018. "Impact of fixed charges on the viability of self-consumption photovoltaics," Energy Policy, Elsevier, vol. 122(C), pages 322-331.
    2. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    3. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    4. Yu, L. & Li, Y.P. & Huang, G.H., 2016. "A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China," Energy, Elsevier, vol. 98(C), pages 190-203.
    5. Yajing Gao & Fushen Xue & Wenhai Yang & Yanping Sun & Yongjian Sun & Haifeng Liang & Peng Li, 2017. "A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service," Energies, MDPI, vol. 10(9), pages 1-21, August.
    6. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2019. "Multiobjective robust fuzzy stochastic approach for sustainable smart grid design," Energy, Elsevier, vol. 176(C), pages 929-939.
    7. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    8. Young, Sharon & Bruce, Anna & MacGill, Iain, 2019. "Potential impacts of residential PV and battery storage on Australia's electricity networks under different tariffs," Energy Policy, Elsevier, vol. 128(C), pages 616-627.
    9. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward blockchain-based renewable energy microgrid design considering default risk and demand uncertainty," Renewable Energy, Elsevier, vol. 163(C), pages 870-881.
    10. Sadineni, Suresh B. & Atallah, Fady & Boehm, Robert F., 2012. "Impact of roof integrated PV orientation on the residential electricity peak demand," Applied Energy, Elsevier, vol. 92(C), pages 204-210.
    11. Ji, Ling & Zhang, Beibei & Huang, Guohe & Wang, Peng, 2020. "A novel multi-stage fuzzy stochastic programming for electricity system structure optimization and planning with energy-water nexus - A case study of Tianjin, China," Energy, Elsevier, vol. 190(C).
    12. Talent, Orlando & Du, Haiping, 2018. "Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures," Renewable Energy, Elsevier, vol. 129(PA), pages 513-526.
    13. Charwand, Mansour & Gitizadeh, Mohsen, 2018. "Optimal TOU tariff design using robust intuitionistic fuzzy divergence based thresholding," Energy, Elsevier, vol. 147(C), pages 655-662.
    14. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure," Energy Policy, Elsevier, vol. 145(C).
    15. Prajwal Khadgi & Lihui Bai, 2018. "A simulation study for residential electricity user behavior under dynamic variable pricing with demand charge," IISE Transactions, Taylor & Francis Journals, vol. 50(8), pages 699-710, August.
    16. Zhou, Kaile & Wei, Shuyu & Yang, Shanlin, 2019. "Time-of-use pricing model based on power supply chain for user-side microgrid," Applied Energy, Elsevier, vol. 248(C), pages 35-43.
    17. Tsao, Yu-Chung & Vu, Thuy-Linh, 2019. "Power supply chain network design problem for smart grid considering differential pricing and buy-back policies," Energy Economics, Elsevier, vol. 81(C), pages 493-502.
    18. Chen, Falin & Lu, Shyi-Min & Chang, Yi-Lin, 2007. "Renewable energy in Taiwan: Its developing status and strategy," Energy, Elsevier, vol. 32(9), pages 1634-1646.
    19. Ko, Li & Wang, Jen-Chun & Chen, Chia-Yon & Tsai, Hsing-Yeh, 2015. "Evaluation of the development potential of rooftop solar photovoltaic in Taiwan," Renewable Energy, Elsevier, vol. 76(C), pages 582-595.
    20. Antweiler, Werner, 2017. "A two-part feed-in-tariff for intermittent electricity generation," Energy Economics, Elsevier, vol. 65(C), pages 458-470.
    21. Maheshwari, Aditya & Heleno, Miguel & Ludkovski, Michael, 2020. "The effect of rate design on power distribution reliability considering adoption of distributed energy resources," Applied Energy, Elsevier, vol. 268(C).
    22. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    23. Gadi Fibich & Roy Klein & Oded Koenigsberg & Eitan Muller, 2017. "Optimal Three-Part Tariff Plans," Operations Research, INFORMS, vol. 65(5), pages 1177-1189, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    2. Tsao, Yu-Chung & Beyene, Tsehaye Dedimas & Thanh, Vo-Van & Gebeyehu, Sisay Geremew & Kuo, Tsai-Chi, 2022. "Power distribution network design considering the distributed generations and differential and dynamic pricing," Energy, Elsevier, vol. 241(C).
    3. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    5. Say, Kelvin & John, Michele & Dargaville, Roger, 2019. "Power to the people: Evolutionary market pressures from residential PV battery investments in Australia," Energy Policy, Elsevier, vol. 134(C).
    6. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    7. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    8. Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2023. "Sustainable microgrid design with peer-to-peer energy trading involving government subsidies and uncertainties," Renewable Energy, Elsevier, vol. 206(C), pages 658-675.
    9. Tsao, Yu-Chung & Thanh, Vo-Van & Chang, Yi-Ying & Wei, Hsi-Hsien, 2021. "COVID-19: Government subsidy models for sustainable energy supply with disruption risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    11. Heleno, Miguel & Sehloff, David & Coelho, Antonio & Valenzuela, Alan, 2020. "Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies," Applied Energy, Elsevier, vol. 279(C).
    12. Freitas, S. & Brito, M.C., 2019. "Non-cumulative only solar photovoltaics for electricity load-matching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 271-283.
    13. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    14. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    15. Eke, Rustu & Senturk, Ali, 2013. "Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations," Applied Energy, Elsevier, vol. 109(C), pages 154-162.
    16. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    17. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Arun S. Malik & Stephen C. Smith, 2012. "Adaptation To Climate Change In Low-Income Countries: Lessons From Current Research And Needs From Future Research," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-22.
    19. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    20. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.