Denitrification techniques for biomass combustion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2017.10.054
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Licki, J. & Chmielewski, A. G. & Iller, E. & Zimek, Z. & Mazurek, J. & Sobolewski, L., 2003. "Electron-beam flue-gas treatment for multicomponent air-pollution control," Applied Energy, Elsevier, vol. 75(3-4), pages 145-154, July.
- Hodžić, Nihad & Kazagić, Anes & Smajević, Izet, 2016. "Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas," Applied Energy, Elsevier, vol. 168(C), pages 38-47.
- Mladenović, Rastko & Dakić, Dragoljub & Erić, Aleksandar & Mladenović, Milica & Paprika, Milijana & Repić, Branislav, 2009. "The boiler concept for combustion of large soya straw bales," Energy, Elsevier, vol. 34(5), pages 715-723.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Magdalena Dołżyńska & Sławomir Obidziński & Małgorzata Kowczyk-Sadowy & Małgorzata Krasowska, 2019. "Densification and Combustion of Cherry Stones," Energies, MDPI, vol. 12(16), pages 1-15, August.
- Jae-Hyun Park & Young-Chan Choi & Young-Joo Lee & Hyung-Taek Kim, 2020. "Characteristics of Miscanthus Fuel by Wet Torrefaction on Fuel Upgrading and Gas Emission Behavior," Energies, MDPI, vol. 13(10), pages 1-10, May.
- Sefa Yalcin & Alp Er Ş. Konukman & Adnan Midilli, 2020. "A perspective on fossil fuel based flue gas emission reduction technologies," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 664-677, August.
- Sławomir Obidziński & Magdalena Dołżyńska & Małgorzata Kowczyk-Sadowy & Krzysztof Jadwisieńczak & Paweł Sobczak, 2019. "Densification and Fuel Properties of Onion Husks," Energies, MDPI, vol. 12(24), pages 1-18, December.
- Adolfas Jančauskas & Kęstutis Buinevičius, 2021. "Combination of Primary Measures on Flue Gas Emissions in Grate-Firing Biofuel Boiler," Energies, MDPI, vol. 14(4), pages 1-16, February.
- Chen, Zhibin & Wang, Li & Huang, Zhiwei & Zhuang, Ping & Shi, Yiguang & Evrendilek, Fatih & Huang, Shengzheng & He, Yao & Liu, Jingyong, 2024. "Dynamic and optimal ash-to-gas responses of oxy-fuel and air combustions of soil remediation biomass," Renewable Energy, Elsevier, vol. 225(C).
- Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
- Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
- Ozgen, S. & Cernuschi, S. & Caserini, S., 2021. "An overview of nitrogen oxides emissions from biomass combustion for domestic heat production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
- Ma, Yan-Chao & Zheng, Yang & Wang, Li-Hua & Sun, Bao-Guo & Zhao, Mou-Ming & Huang, Ming-Quan & Wu, Ji-Hong & Li, He-He & Sun, Xiao-Tao, 2023. "Integrated distilled spent grain with husk utilization: Current situation, trend, and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
- Kuznetsov, G.V. & Syrodoy, S.V. & Borisov, B.V. & Kostoreva, Zh.A. & Gutareva, N. Yu & Kostoreva, A.A., 2023. "Influence of homeomorphism of the surface of a wood particle on the characteristics of its ignition," Renewable Energy, Elsevier, vol. 203(C), pages 828-840.
- Abdulrasheed, A.A. & Jalil, A.A. & Triwahyono, S. & Zaini, M.A.A. & Gambo, Y. & Ibrahim, M., 2018. "Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1067-1085.
- Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eric, Aleksandar & Dakic, Dragoljub & Nemoda, Stevan & Komatina, Mirko & Repic, Branislav, 2012. "Experimental determination thermo physical characteristics of balled biomass," Energy, Elsevier, vol. 45(1), pages 350-357.
- Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
- Yimin Deng & Renaud Ansart & Jan Baeyens & Huili Zhang, 2019. "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, MDPI, vol. 12(20), pages 1-19, October.
- Li, Xinzhuo & Choi, Minsung & Jung, Chanho & Park, Yeseul & Choi, Gyungmin, 2022. "Effects of the staging position and air−LPG mixing ratio on the combustion and emission characteristics of coal and gas co-firing," Energy, Elsevier, vol. 254(PB).
- Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
- Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).
- Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).
- Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
- Sun, Zhongwei & Wang, Shengwei & Zhou, Qulan & Hui, Shi'en, 2010. "Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system," Applied Energy, Elsevier, vol. 87(5), pages 1505-1512, May.
- Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
- Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
- Taeyoung Chae & Jaewook Lee & Yongwoon Lee & Won Yang & Changkook Ryu, 2021. "Pilot-Scale Experimental Study on Impacts of Biomass Cofiring Methods to NOx Emission from Pulverized Coal Boilers—Part 2: NOx Reduction Capability through Reburning versus Cofiring," Energies, MDPI, vol. 14(20), pages 1-12, October.
- Rahimipetroudi, Iman & Rashid, Kashif & Yang, Je Bok & Dong, Sang Keun, 2021. "Development of environment-friendly dual fuel pulverized coal-natural gas combustion technology for the co-firing power plant boiler: Experimental and numerical analysis," Energy, Elsevier, vol. 228(C).
- Syrodoy, S.V. & Kuznetsov, G.V. & Gutareva, N. Yu & Nigay (Ivanova), N.A., 2022. "Mathematical modeling of the thermochemical processes of sequestration of SOx when burning the particles of the coal and wood mixture," Renewable Energy, Elsevier, vol. 185(C), pages 1392-1409.
- Malico, Isabel & Nepomuceno Pereira, Ricardo & Gonçalves, Ana Cristina & Sousa, Adélia M.O., 2019. "Current status and future perspectives for energy production from solid biomass in the European industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 960-977.
- Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
- Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).
- Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
- Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Wang, Chang'an & Wu, Song & Lv, Qiang & Liu, Xuan & Chen, Wufeng & Che, Defu, 2017. "Study on correlations of coal chemical properties based on database of real-time data," Applied Energy, Elsevier, vol. 204(C), pages 1115-1123.
More about this item
Keywords
Biomass combustion; NOx emission; DeNOx techniques;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:3350-3364. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.