IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2542-d359289.html
   My bibliography  Save this article

Effects of Forces, Particle Sizes, and Moisture Contents on Mechanical Behaviour of Densified Briquettes from Ground Sunflower Stalks and Hazelnut Husks

Author

Listed:
  • Cimen Demirel

    (Department of Agricultural Machinery, Faculty of Agriculture, Ondokuz Mayis University, 55139 Samsun, Turkey
    Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague, Czech Republic)

  • Gürkan Alp Kağan Gürdil

    (Department of Agricultural Machinery, Faculty of Agriculture, Ondokuz Mayis University, 55139 Samsun, Turkey)

  • Abraham Kabutey

    (Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague, Czech Republic)

  • David Herak

    (Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague, Czech Republic)

Abstract

Using the uniaxial compression process, the mechanical behaviour of densified briquettes from ground sunflower stalks and hazelnut husks was studied under different forces (100, 200, 300, and 400 kN), particle sizes (0, 3, 6, and 10 mm), and moisture contents (sunflower; 11.23%, 14.44%, and 16.89% w.b.) and (hazelnut; 12.64%, 14.83%, and 17.34% w.b.) at a constant speed of 5 mm min −1 . For each test, the biomass material was compacted at a constant volume of 28.27 × 10 −5 m 3 using a 60 mm-diameter vessel. Determined parameters included densification energy (J), hardness (kN·mm −1 ), analytical densification energy (J), briquette volume (m 3 ), bulk density of materials (kg·m −3 ), briquette bulk density (kg·m −3 ), and briquette volume energy (J·m −3 ). The ANOVA multivariate tests of significance results showed that for ground sunflower stalk briquettes, the force and particle size interactions had no significant effect ( p > 0.05) on the above-mentioned parameters compared to the categorical factors, which had a significant effect ( p < 0.05) similar to the effects of forces, moisture contents, and their interactions. For ground hazelnut husk briquettes, all the factors and their interactions had a significant effect on the determined parameters. These biomass materials could be attractive for the briquette market.

Suggested Citation

  • Cimen Demirel & Gürkan Alp Kağan Gürdil & Abraham Kabutey & David Herak, 2020. "Effects of Forces, Particle Sizes, and Moisture Contents on Mechanical Behaviour of Densified Briquettes from Ground Sunflower Stalks and Hazelnut Husks," Energies, MDPI, vol. 13(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2542-:d:359289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zvicevičius, Egidijus & Raila, Algirdas & Čiplienė, Aušra & Černiauskienė, Živilė & Kadžiulienė, Žydrė & Tilvikienė, Vita, 2018. "Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall," Renewable Energy, Elsevier, vol. 119(C), pages 185-192.
    2. Tatiana Ivanova & Abraham Kabutey & David Herák & Cimen Demirel, 2018. "Estimation of Energy Requirement of Jatropha Curcas L. Seedcake Briquettes under Compression Loading," Energies, MDPI, vol. 11(8), pages 1-11, July.
    3. Abraham Kabutey & David Herak & Himsar Ambarita & Riswanti Sigalingging, 2019. "Modeling of Linear and Non-linear Compression Processes of Sunflower Bulk Oilseeds," Energies, MDPI, vol. 12(15), pages 1-14, August.
    4. Mikulandrić, Robert & Vermeulen, Brecht & Nicolai, Bart & Saeys, Wouter, 2016. "Modelling of thermal processes during extrusion based densification of agricultural biomass residues," Applied Energy, Elsevier, vol. 184(C), pages 1316-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gendek, Arkadiusz & Aniszewska, Monika & Owoc, Danuta & Tamelová, Barbora & Malaťák, Jan & Velebil, Jan & Krilek, Jozef, 2023. "Physico-mechanical and energy properties of pellets made from ground walnut shells, coniferous tree cones and their mixtures," Renewable Energy, Elsevier, vol. 211(C), pages 248-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abraham Kabutey & David Herak & Himsar Ambarita & Riswanti Sigalingging, 2019. "Modeling of Linear and Non-linear Compression Processes of Sunflower Bulk Oilseeds," Energies, MDPI, vol. 12(15), pages 1-14, August.
    2. Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
    3. Marcin Bielecki & Valentina Zubkova & Andrzej Strojwas, 2022. "Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products," Energies, MDPI, vol. 15(12), pages 1-20, June.
    4. Junaid Ahmad & Stergios Vakalis & Francesco Patuzzi & Marco Baratieri, 2021. "Effect of process conditions on the surface properties of biomass chars produced by means of pyrolysis and CO2 gasification," Energy & Environment, , vol. 32(8), pages 1378-1396, December.
    5. Li, Yudi & Xu, Hongguang & Jing, Chenghu & Jiang, Jihai & Hou, Xuyan, 2019. "A novel heat transfer model of biomass briquettes based on secondary development in EDEM," Renewable Energy, Elsevier, vol. 131(C), pages 1247-1254.
    6. Zhang, Qi & Shi, Zhenzhen & Zhang, Pengfei & Li, Zhichao & Jaberi-Douraki, Majid, 2017. "Predictive temperature modeling and experimental investigation of ultrasonic vibration-assisted pelleting of wheat straw," Applied Energy, Elsevier, vol. 205(C), pages 511-528.
    7. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    8. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    9. Natalia Sorokova & Vladimir Didur & Miroslav Variny, 2022. "Mathematical Modeling of Heat and Mass Transfer during Moisture–Heat Treatment of Castor Beans to Improve the Quality of Vegetable Oil," Agriculture, MDPI, vol. 12(9), pages 1-17, September.
    10. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    11. de Souza, Hector Jesus Pegoretti Leite & Arantes, Marina Donária Chaves & Vidaurre, Graziela Baptista & Andrade, Carlos Rogério & Carneiro, Angélica de Cássia Oliveira & de Souza, Daniel Pegoretti Lei, 2020. "Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production," Renewable Energy, Elsevier, vol. 149(C), pages 128-140.
    12. Akter, Mst. Mahmoda & Surovy, Israt Zahan & Sultana, Nazmin & Faruk, Md. Omar & Gilroyed, Brandon H. & Tijing, Leonard & Arman, & Didar-ul-Alam, Md. & Shon, Ho Kyong & Nam, Sang Yong & Kabir, Mohammad, 2024. "Techno-economics and environmental sustainability of agricultural biomass-based energy potential," Applied Energy, Elsevier, vol. 359(C).
    13. Jianqiang Zhou & Pan Gao & Changqing Dong & Yongping Yang, 2018. "Effect of Temperature and Mineral Matter on the Formation of NOx Precursors during Fast Pyrolysis of 2,5-Diketopiperazine," Energies, MDPI, vol. 11(3), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2542-:d:359289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.