IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2538-d359207.html
   My bibliography  Save this article

Effect of Porous Medium and Copper Heat Sink on Cooling of Heat-Generating Element

Author

Listed:
  • Marina Astanina

    (Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634050 Tomsk, Russia)

  • Mikhail Sheremet

    (Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634050 Tomsk, Russia)

  • U. S. Mahabaleshwar

    (Department of Mathematics, Davangere University, Shivagangothri, Davangere 577007, India)

  • Jitender Singh

    (Department of Mathematics, Guru Nanak Dev University, Amritsar 143005, India)

Abstract

Cooling of heat-generating elements is a challenging problem in engineering. In this article, the transient free convection of a temperature-dependent viscosity liquid inside the porous cavity with copper radiator and the heat-generating element is studied using mathematical modeling techniques. The vertical and top walls of the chamber are kept at low constant temperature, while the bottom wall is kept adiabatic. The working fluid is a heat-conducting liquid with temperature-dependent viscosity. A mathematical model is developed based on dimensionless stream function, vorticity, and temperature variables. The governing properties are the variable viscosity, geometric parameters of the radiator, and size of thermally insulated strip on vertical surfaces of the cavity. The effect of these parameters on the energy transport and circulation patterns are analyzed numerically. Based on the numerical results obtained, recommendations are given on the optimal values of the governing parameters for the effective operation of the cooling system. It is shown that the optimal number of radiator fins for the cooling system configuration under consideration is 3. In addition, the thermal insulation of the vertical walls and the increased thickness of the radiator fins have a negative effect on the operation of the cooling system.

Suggested Citation

  • Marina Astanina & Mikhail Sheremet & U. S. Mahabaleshwar & Jitender Singh, 2020. "Effect of Porous Medium and Copper Heat Sink on Cooling of Heat-Generating Element," Energies, MDPI, vol. 13(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2538-:d:359207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashem Zadeh, S.M. & Sabour, M. & Sazgara, S. & Ghalambaz, M., 2020. "Free convection flow and heat transfer of nanofluids in a cavity with conjugate solid triangular blocks: Employing Buongiorno’s mathematical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Rashidi, Saman & Kashefi, Mohammad Hossein & Kim, Kyung Chun & Samimi-Abianeh, Omid, 2019. "Potentials of porous materials for energy management in heat exchangers – A comprehensive review," Applied Energy, Elsevier, vol. 243(C), pages 206-232.
    3. Tlili, Iskander & Bhatti, M.M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Sheikholeslami, M. & Shafee, Ahmad, 2019. "Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Ghalambaz & Mohammad Shahabadi & S. A. M Mehryan & Mikhail Sheremet & Obai Younis & Pouyan Talebizadehsardari & Wabiha Yaici, 2021. "Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction," Energies, MDPI, vol. 14(5), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    2. Liqiang Xu & Qiufang Cui & Te Tu & Shuo Liu & Long Ji & Shuiping Yan, 2020. "Waste heat recovery from the stripped gas in carbon capture process by membrane technology: Hydrophobic and hydrophilic organic membrane cases," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 421-435, April.
    3. Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
    4. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Salahuddin, T. & Imtiaz, Ikram & Khan, Mair, 2022. "Analysis of entropy generation in AA7072-methanol and AA7072+AA7075-methanol flow near a parabolic surface," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    7. Zhao, Qiaonan & Yang, Qiguo & Xu, Hongtao & Jiao, Anyao & Pan, Donghui, 2023. "Experimental study on pollutant emission characteristics of diesel urea-based selective catalytic reduction system based on corrugated substrate," Energy, Elsevier, vol. 267(C).
    8. Chen, Tianyu & Shu, Gequn & Tian, Hua & Zhao, Tingting & Zhang, Hongfei & Zhang, Zhao, 2020. "Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery," Applied Energy, Elsevier, vol. 266(C).
    9. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    10. Kumar, Anil & Rao, Pentyala Srinivasa, 2023. "Numerical study of periodically heated wall effect on natural convection in an enclosure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 118-133.
    11. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
    12. Hongyan Lu & Lixin Yang & Zhiyong Wu & Siqi Xu, 2020. "Numerical and Experimental Study on Convective Heat Transfer Characteristics in Foam Materials," Energies, MDPI, vol. 13(2), pages 1-14, January.
    13. Caket, Ahmet Guray & Wang, Chunyang & Nugroho, Marvel Alif & Celik, Hasan & Mobedi, Moghtada, 2022. "Recent studies on 3D lattice metal frame technique for enhancement of heat transfer: Discovering trends and reasons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Hosain, M.L. & Domínguez, J.M. & Bel Fdhila, R. & Kyprianidis, K., 2019. "Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Riaz, A. & Zeeshan, A. & Bhatti, M.M. & Ellahi, R., 2020. "Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2538-:d:359207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.