IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119312415.html
   My bibliography  Save this article

Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects

Author

Listed:
  • Tlili, Iskander
  • Bhatti, M.M.
  • Hamad, Samir Mustafa
  • Barzinjy, Azeez A.
  • Sheikholeslami, M.
  • Shafee, Ahmad

Abstract

Hybrid nanofluid free convection within a permeable media was presented with CVFEM (control volume finite element method) including magnetic effect. Momentum equations have been updated with adding non-Darcy model terms. Hybrid nanoparticles (Fe3O4+MWCNT) with a base fluid of water have been considered. Impacts of Darcy number, magnetic, radiation, and Rayleigh number on migration of nanomaterial were depicted. A numerical and graphical comparison is also presented to make sure that the present analysis is correct. From the graphical results it is found that radiation parameter and magnetic boosts the Nusselt number whereas the magnetic effect shows converse relation.

Suggested Citation

  • Tlili, Iskander & Bhatti, M.M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Sheikholeslami, M. & Shafee, Ahmad, 2019. "Macroscopic modeling for convection of Hybrid nanofluid with magnetic effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312415
    DOI: 10.1016/j.physa.2019.122136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312415
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    2. Prakash, J. & Siva, E.P. & Tripathi, D. & Kuharat, S. & Bég, O. Anwar, 2019. "Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump," Renewable Energy, Elsevier, vol. 133(C), pages 1308-1326.
    3. Sheikholeslami, M. & Zareei, Alireza & Jafaryar, M. & Shafee, Ahmad & Li, Zhixiong & Smida, Amor & Tlili, I., 2019. "Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 557-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riaz, A. & Zeeshan, A. & Bhatti, M.M. & Ellahi, R., 2020. "Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Salahuddin, T. & Imtiaz, Ikram & Khan, Mair, 2022. "Analysis of entropy generation in AA7072-methanol and AA7072+AA7075-methanol flow near a parabolic surface," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    3. Zeeshan, A. & Bhatti, M.M. & Muhammad, Taseer & Zhang, Lijun, 2020. "Magnetized peristaltic particle–fluid propulsion with Hall and ion slip effects through a permeable channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Marina Astanina & Mikhail Sheremet & U. S. Mahabaleshwar & Jitender Singh, 2020. "Effect of Porous Medium and Copper Heat Sink on Cooling of Heat-Generating Element," Energies, MDPI, vol. 13(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manh, Tran Dinh & Jafaryar, M. & Hamad, Samir Mustafa & Barzinjy, Azeez A. & Shafee, Ahmad & Abohamzeh, Elham & Tlili, Iskander, 2020. "Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Manh, Tran Dinh & Tlili, I. & Shafee, Ahmad & Nguyen-Thoi, Trung & Hamouda, Hassen, 2020. "Modeling of hybrid nanofluid behavior within a permeable media involving buoyancy effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Xiong, Qingang & Ayani, M. & Barzinjy, Azeez A. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung, 2020. "Modeling of heat transfer augmentation due to complex-shaped turbulator using nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Manh, Tran Dinh & Nam, Nguyen Dang & Jacob, Kavikumar & Hajizadeh, Ahmad & Babazadeh, Houman & Mahjoub, Mohammed & Tlili, I. & Li, Z., 2020. "Simulation of heat transfer in 2D porous tank in appearance of magnetic nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    5. Xiong, Qingang & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Nguyen-Thoi, Trung & Rebey, Amor & Haq, Rizwan-ul & Li, Z., 2020. "Energy storage simulation involving NEPCM solidification in appearance of fins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    6. Rabbi, Khan Md. & Sheikholeslami, M. & Karim, Anwarul & Shafee, Ahmad & Li, Zhixiong & Tlili, Iskander, 2020. "Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Manh, Tran Dinh & Khan, Ahmad Raza & Shafee, Ahmad & Nam, Nguyen Dang & Tlili, I. & Nguyen-Thoi, Trung & Li, Z., 2020. "Hybrid nanoparticles migration due to MHD free convection considering radiation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    8. Tlili, I. & Vakkar, Ali, 2020. "Thermodynamic analysis and optimization of solar thermal engine: Performance enhancement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Manh, Tran Dinh & Nam, Nguyen Dang & Abdulrahman, Gihad Keyany & Khan, Muhammad Humran & Tlili, I. & Shafee, Ahmad & Shamlooei, M. & Nguyen-Thoi, Trung, 2020. "Investigation of hybrid nanofluid migration within a porous closed domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    10. Tran Dinh, Manh & Tlili, I. & Dara, Rebwar Nasir & Shafee, Ahmad & Al-Jahmany, Yahya Yaseen Yahya & Nguyen-Thoi, Trung, 2020. "Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. Shafee, Ahmad & Muhammad, Taseer & Alsakran, Reem & Tlili, Iskander & Babazadeh, Houman & Khan, Umar, 2020. "Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    13. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    14. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    15. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    17. Bondareva, Nadezhda S. & Sheremet, Mikhail A., 2024. "Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material," Energy, Elsevier, vol. 296(C).
    18. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    19. Gabriele Battista & Emanuele de Lieto Vollaro & Luca Evangelisti & Roberto de Lieto Vollaro, 2022. "Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy)," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    20. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.