IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2513-d358838.html
   My bibliography  Save this article

Bridging Tools to Better Understand Environmental Performances and Raw Materials Supply of Traction Batteries in the Future EU Fleet

Author

Listed:
  • Silvia Bobba

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Isabella Bianco

    (Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Umberto Eynard

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
    Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
    SEIDOR SBS Services, c/Pujades 350, 08019 Barcelona, Spain)

  • Samuel Carrara

    (European Commission, Joint Research Centre (JRC), 1755 LE Petten, The Netherlands)

  • Fabrice Mathieux

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Gian Andrea Blengini

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
    Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

Sustainable and smart mobility and associated energy systems are key to decarbonise the EU and develop a clean, resource efficient, circular and carbon-neutral future. To achieve the 2030 and 2050 targets, technological and societal changes are needed. This transition will inevitably change the composition of the future EU fleet, with an increasing share of electric vehicles (xEVs). To assess the potential contribution of lithium-ion traction batteries (LIBs) in decreasing the environmental burdens of EU mobility, several aspects should be included. Even though environmental assessments of batteries along their life-cycle have been already conducted using life-cycle assessment, a single tool does not likely provide a complete overview of such a complex system. Complementary information is provided by material flow analysis and criticality assessment, with emphasis on supply risk. Bridging complementary aspects can better support decision-making, especially when different strategies are simultaneously tackled. The results point out that the future life-cycle GWP of traction LIBs will likely improve, mainly due to more environmental-friendly energy mix and improved recycling. Even though second-use will postpone available materials for recycling, both these end-of-life strategies allow keeping the values of materials in the circular economy, with recycling also contributing to mitigate the supply risk of Lithium and Nickel.

Suggested Citation

  • Silvia Bobba & Isabella Bianco & Umberto Eynard & Samuel Carrara & Fabrice Mathieux & Gian Andrea Blengini, 2020. "Bridging Tools to Better Understand Environmental Performances and Raw Materials Supply of Traction Batteries in the Future EU Fleet," Energies, MDPI, vol. 13(10), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2513-:d:358838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    2. ALONSO RAPOSO Maria & CIUFFO Biagio & ARDENTE Fulvio & AURAMBOUT Jean Philippe & Gianmarco BALDINI & Robert BRAUN & Panayotis CHRISTIDIS & Aris Christodoulou & Amandine DUBOZ & Sofia FELICI & Jaime FE, 2019. "The future of road transport," JRC Research Reports JRC116644, Joint Research Centre.
    3. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    4. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    5. Maarten Messagie & Faycal-Siddikou Boureima & Thierry Coosemans & Cathy Macharis & Joeri Van Mierlo, 2014. "A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels," Energies, MDPI, vol. 7(3), pages 1-16, March.
    6. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    7. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanna Gonzales-Calienes & Ben Yu & Farid Bensebaa, 2022. "Development of a Reverse Logistics Modeling for End-of-Life Lithium-Ion Batteries and Its Impact on Recycling Viability—A Case Study to Support End-of-Life Electric Vehicle Battery Strategy in Canada," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    2. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    3. Luca Ciacci & Fabrizio Passarini, 2020. "Life Cycle Assessment (LCA) of Environmental and Energy Systems," Energies, MDPI, vol. 13(22), pages 1-8, November.
    4. Bertha Maya Sopha & Dwi Megah Purnamasari & Sholeh Ma’mun, 2022. "Barriers and Enablers of Circular Economy Implementation for Electric-Vehicle Batteries: From Systematic Literature Review to Conceptual Framework," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    5. Charli Sitinjak & Rozmi Ismail & Zurinah Tahir & Rizqon Fajar & Wiyanti Fransisca Simanullang & Edward Bantu & Karuhanga Samuel & Rosniza Aznie Che Rose & Muhamad Razuhanafi Mat Yazid & Zambri Harun, 2022. "Acceptance of ELV Management: The Role of Social Influence, Knowledge, Attitude, Institutional Trust, and Health Issues," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    6. Nenming Wang & Guwen Tang, 2022. "A Review on Environmental Efficiency Evaluation of New Energy Vehicles Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(6), pages 1-35, March.
    7. Cristina T. Matos & Fabrice Mathieux & Luca Ciacci & Maren Cathrine Lundhaug & María Fernanda Godoy León & Daniel Beat Müller & Jo Dewulf & Konstantinos Georgitzikis & Jaco Huisman, 2022. "Material system analysis: A novel multilayer system approach to correlate EU flows and stocks of Li‐ion batteries and their raw materials," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1261-1276, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    2. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Silje Nornes Bryntesen & Anders Hammer Strømman & Ignat Tolstorebrov & Paul R. Shearing & Jacob J. Lamb & Odne Stokke Burheim, 2021. "Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review," Energies, MDPI, vol. 14(5), pages 1-41, March.
    4. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    6. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    7. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    8. Weimer, Lucas & Braun, Tobias & Hemdt, Ansgar vom, 2019. "Design of a systematic value chain for lithium-ion batteries from the raw material perspective," Resources Policy, Elsevier, vol. 64(C).
    9. Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
    10. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    12. Deuten, Sebastiaan & Gómez Vilchez, Jonatan J. & Thiel, Christian, 2020. "Analysis and testing of electric car incentive scenarios in the Netherlands and Norway," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    13. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Yash Kotak & Carlos Marchante Fernández & Lluc Canals Casals & Bhavya Satishbhai Kotak & Daniel Koch & Christian Geisbauer & Lluís Trilla & Alberto Gómez-Núñez & Hans-Georg Schweiger, 2021. "End of Electric Vehicle Batteries: Reuse vs. Recycle," Energies, MDPI, vol. 14(8), pages 1-15, April.
    15. O. Y. Edelenbosch & A. F. Hof & B. Nykvist & B. Girod & D. P. Vuuren, 2018. "Transport electrification: the effect of recent battery cost reduction on future emission scenarios," Climatic Change, Springer, vol. 151(2), pages 95-108, November.
    16. Mauler, Lukas & Duffner, Fabian & Leker, Jens, 2021. "Economies of scale in battery cell manufacturing: The impact of material and process innovations," Applied Energy, Elsevier, vol. 286(C).
    17. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    18. Ortega-Cabezas, Pedro-Miguel & Colmenar-Santos, Antonio & Borge-Diez, David & Blanes-Peiró, Jorge-Juan, 2021. "Can eco-routing, eco-driving and eco-charging contribute to the European Green Deal? Case Study: The City of Alcalá de Henares (Madrid, Spain)," Energy, Elsevier, vol. 228(C).
    19. Christian Thies & Christoph Hüls & Karsten Kieckhäfer & Jörg Wansart & Thomas S. Spengler, 2022. "Project portfolio planning under CO2 fleet emission restrictions in the automotive industry," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 937-951, June.
    20. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2513-:d:358838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.