IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2403-d356788.html
   My bibliography  Save this article

Optimising Frequency-Based Railway Services with a Limited Fleet Endowment: An Energy-Efficient Perspective

Author

Listed:
  • Luca D’Acierno

    (Department of Civil, Architectural and Environmental Engineering, Federico II University of Naples, Via Claudio 21, 80125 Naples, Italy)

  • Marilisa Botte

    (Department of Civil, Architectural and Environmental Engineering, Federico II University of Naples, Via Claudio 21, 80125 Naples, Italy
    Department of Agricultural Sciences, Federico II University of Naples, Via Università 100, 80055 Portici (NA), Italy)

Abstract

Energy-saving and energy-recovery strategies represent key factors to achieve operational cost reductions within rail systems’ management tasks. However, in altering service features, they also affect passenger satisfaction. This paper investigates the effect of implementing such measures in the case of rolling stock unavailability. Numerous operational scenarios were explored by analysing different planned headway and rolling stock configurations. The scenarios were simulated with and without the adoption of Energy-Saving Strategies (ESS), both in ordinary and in disruption conditions. Our results show that, in ordinary conditions, the optimal scenarios are those that minimise the planned headway. By contrast, in disrupted conditions, due to greater passenger inconvenience, the use of a time-optimal condition is preferable if a real-time adjustment of ESS is not feasible. However, if the ESS can be updated in real-time, use of ESS is preferable only if the adopted headway is the smallest of those associated with the rolling stock scheme considered.

Suggested Citation

  • Luca D’Acierno & Marilisa Botte, 2020. "Optimising Frequency-Based Railway Services with a Limited Fleet Endowment: An Energy-Efficient Perspective," Energies, MDPI, vol. 13(10), pages 1-26, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2403-:d:356788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    2. Gallo, Mariano, 2018. "Improving equity of urban transit systems with the adoption of origin-destination based taxi fares," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 38-55.
    3. Luca D’Acierno & Marilisa Botte, 2018. "A Passenger-Oriented Optimization Model for Implementing Energy-Saving Strategies in Railway Contexts," Energies, MDPI, vol. 11(11), pages 1-25, October.
    4. Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    2. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    2. Mariano Gallo & Marilisa Botte & Antonio Ruggiero & Luca D’Acierno, 2020. "A Simulation Approach for Optimising Energy-Efficient Driving Speed Profiles in Metro Lines," Energies, MDPI, vol. 13(22), pages 1-17, November.
    3. M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
    4. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    5. Jiang Liu & Tian-tian Li & Bai-gen Cai & Jiao Zhang, 2020. "Boundary Identification for Traction Energy Conservation Capability of Urban Rail Timetables: A Case Study of the Beijing Batong Line," Energies, MDPI, vol. 13(8), pages 1-25, April.
    6. Franciszek Restel & Łukasz Wolniewicz & Matea Mikulčić, 2021. "Method for Designing Robust and Energy Efficient Railway Schedules," Energies, MDPI, vol. 14(24), pages 1-12, December.
    7. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    8. Chang Han & Leishan Zhou & Bin Guo & Yixiang Yue & Wenqiang Zhao & Zeyu Wang & Hanxiao Zhou, 2023. "An Integrated Strategy for Rescheduling High-Speed Train Operation under Single-Direction Disruption," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    9. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    10. Gao, Yuan & Kroon, Leo & Yang, Lixing & Gao, Ziyou, 2018. "Three-stage optimization method for the problem of scheduling additional trains on a high-speed rail corridor," Omega, Elsevier, vol. 80(C), pages 175-191.
    11. Wang, Xuekai & D’Ariano, Andrea & Su, Shuai & Tang, Tao, 2023. "Cooperative train control during the power supply shortage in metro system: A multi-agent reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 244-278.
    12. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    13. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    14. Zhang, Huimin & Li, Shukai & Wang, Yihui & Yang, Lixing & Gao, Ziyou, 2021. "Collaborative real-time optimization strategy for train rescheduling and track emergency maintenance of high-speed railway: A Lagrangian relaxation-based decomposition algorithm," Omega, Elsevier, vol. 102(C).
    15. Bešinović, Nikola & Ferrari Nassar, Raphael & Szymula, Christopher, 2022. "Resilience assessment of railway networks: Combining infrastructure restoration and transport management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Andreas Bärmann & Alexander Martin & Oskar Schneider, 2021. "Efficient Formulations and Decomposition Approaches for Power Peak Reduction in Railway Traffic via Timetabling," Transportation Science, INFORMS, vol. 55(3), pages 747-767, May.
    17. Zhan, Shuguang & Xie, Jiemin & Wong, S.C. & Zhu, Yongqiu & Corman, Francesco, 2024. "Handling uncertainty in train timetable rescheduling: A review of the literature and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    18. Lu, Gongyuan & Ning, Jia & Liu, Xiaobo & Nie, Yu (Marco), 2022. "Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Xu, Peijuan & Corman, Francesco & Peng, Qiyuan & Luan, Xiaojie, 2017. "A train rescheduling model integrating speed management during disruptions of high-speed traffic under a quasi-moving block system," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 638-666.
    20. Xing, Zongyi & Zhang, Zhenyu & Guo, Jian & Qin, Yong & Jia, Limin, 2023. "Rail train operation energy-saving optimization based on improved brute-force search," Applied Energy, Elsevier, vol. 330(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2403-:d:356788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.