IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p120-d301900.html
   My bibliography  Save this article

Performance Analysis and Structure Optimization of a Nautilus Isometric Spiral Wind Turbine

Author

Listed:
  • Zheng Li

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Wenda Zhang

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Hao Dong

    (School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China)

  • Yongsheng Tian

    (Jilantai Town Precision Salt Branch Factory, Azuo Banner 750333, China)

Abstract

Background: This paper proposes a Nautilus isometric spiral vertical axis wind turbine, which is a new structure, and its aerodynamic performance and power generation performance need to be analyzed. Methods: A 3D model of the wind turbine was built and its aerodynamic performance was analyzed. Then the wind turbine power generation and grid-connected simulation platform was built by MATLAB/SIMULINK, and its power generation performance and subsequent grid connection were studied. Results: The basic parameters of the wind turbine were obtained. In order to improve efficiency, parameters such as pressure, torque, wind energy utilization rate and relative velocity of wind turbines with different blade numbers and different sizes were compared. In addition, by building a simulation platform for the power generation control system, the power generation characteristics and grid connection characteristic curves of the generator were obtained. Conclusions: When the number of blades is three and the ratio between the ellipse major axis and minor axis of the blade inlet is 0.76, the best efficiency of the wind turbine can be obtained. Application of the power generation control system used in this paper can achieve grid-connected operation of this wind turbine. It also confirmed that the Nautilus isometric spiral wind turbine has good performance and is worthy of in-depth research.

Suggested Citation

  • Zheng Li & Wenda Zhang & Hao Dong & Yongsheng Tian, 2019. "Performance Analysis and Structure Optimization of a Nautilus Isometric Spiral Wind Turbine," Energies, MDPI, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:120-:d:301900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Bo & Yu, Tao & Shu, Hongchun & Zhang, Yuming & Chen, Jian & Sang, Yiyan & Jiang, Lin, 2018. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine," Renewable Energy, Elsevier, vol. 119(C), pages 577-589.
    2. Jie Tian & Dao Zhou & Chi Su & Mohsen Soltani & Zhe Chen & Frede Blaabjerg, 2017. "Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect," Energies, MDPI, vol. 10(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youcef Belkhier & Abdelyazid Achour & Rabindra Nath Shaw & Nasim Ullah & Md. Shahariar Chowdhury & Kuaanan Techato, 2021. "Energy-Based Combined Nonlinear Observer and Voltage Controller for a PMSG Using Fuzzy Supervisor High Order Sliding Mode in a Marine Current Power System," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    2. Belkhier, Youcef & Achour, Abdelyazid & Ullah, Nasim & Shaw, Rabindra Nath & Chowdhury, Shahariar & Techato, Kuaanan, 2022. "Energy-based fuzzy supervisory non integer control for performance improvement of PMSG-Based marine energy system under swell effect and parameter uncertainties," Renewable Energy, Elsevier, vol. 186(C), pages 457-468.
    3. Hongchun Shu & Na An & Bo Yang & Yue Dai & Yu Guo, 2020. "Single Pole-to-Ground Fault Analysis of MMC-HVDC Transmission Lines Based on Capacitive Fuzzy Identification Algorithm," Energies, MDPI, vol. 13(2), pages 1-18, January.
    4. Hongchun Shu & Yiming Han & Ran Huang & Yutao Tang & Pulin Cao & Bo Yang & Yu Zhang, 2020. "Fault Model and Travelling Wave Matching Based Single Terminal Fault Location Algorithm for T-Connection Transmission Line: A Yunnan Power Grid Study," Energies, MDPI, vol. 13(6), pages 1-22, March.
    5. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    6. Xusheng Shen & Tao Xie & Tianzhen Wang, 2020. "A Fuzzy Adaptative Backstepping Control Strategy for Marine Current Turbine under Disturbances and Uncertainties," Energies, MDPI, vol. 13(24), pages 1-16, December.
    7. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    8. Yang, Bo & Wu, Shaocong & Li, Qiang & Yan, Yingjie & Li, Danyang & Luo, Enbo & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Shu, Hongchun & Li, Zilin & Wang, Jingbo, 2023. "Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition," Renewable Energy, Elsevier, vol. 204(C), pages 197-217.
    9. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    10. Huazhen Cao & Chong Gao & Xuan He & Yang Li & Tao Yu, 2020. "Multi-Agent Cooperation Based Reduced-Dimension Q(λ) Learning for Optimal Carbon-Energy Combined-Flow," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Takhi, Hocine & Kemih, Karim & Moysis, Lazaros & Volos, Christos, 2021. "Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 150-169.
    12. Sofiane Bououden & Fouad Allouani & Abdelaziz Abboudi & Mohammed Chadli & Ilyes Boulkaibet & Zaher Al Barakeh & Bilel Neji & Raymond Ghandour, 2023. "Observer-Based Robust Fault Predictive Control for Wind Turbine Time-Delay Systems with Sensor and Actuator Faults," Energies, MDPI, vol. 16(2), pages 1-21, January.
    13. Xu, Tianbo & Zhu, Chunxia & Qi, Wenhai & Cheng, Jun & Shi, Kaibo & Sun, Liangliang, 2022. "Passive analysis and finite-time anti-disturbance control for semi-Markovian jump fuzzy systems with saturation and uncertainty," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    14. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
    15. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    16. Zheng, Jiancai & Wang, Nina & Wan, Decheng & Strijhak, Sergei, 2023. "Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model," Applied Energy, Elsevier, vol. 330(PB).
    17. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    18. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    19. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    20. Hassna Salime & Badre Bossoufi & Youness El Mourabit & Saad Motahhir, 2023. "Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:120-:d:301900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.