IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p9107-d1164210.html
   My bibliography  Save this article

Multistep Wind Power Prediction Using Time-Varying Filtered Empirical Modal Decomposition and Improved Adaptive Sparrow Search Algorithm-Optimized Phase Space Reconstruction–Echo State Network

Author

Listed:
  • Chao Tan

    (School of Electrical and New Energy, China Three Gorges University, Yichang 443000, China)

  • Wenrui Tan

    (Hubei Provincial Research Center on Microgrid Engineering Technology, China Three Gorges University, Yichang 443000, China)

  • Yanjun Shen

    (School of Electrical and New Energy, China Three Gorges University, Yichang 443000, China)

  • Long Yang

    (School of Electrical and New Energy, China Three Gorges University, Yichang 443000, China)

Abstract

Accurate wind power prediction is vital for improving grid stability. In order to improve the accuracy of wind power prediction, in this study, a hybrid prediction model combining time-varying filtered empirical modal decomposition (TVFEMD), improved adaptive sparrow search algorithm (IASSA)-optimized phase space reconstruction (PSR) and echo state network (ESN) methods was proposed. First, the wind power data were decomposed into a set of subsequences by using TVFEMD. Next, PSR was used to construct the corresponding phase space matrix for sequences, which were then divided into training sets, validation sets, and testing sets. Then, ESN was used for subsequence prediction. Finally, the predicted values of all the subseries were used to determine the final predicted power. To enhance the model performance, the sparrow search algorithm was improved in terms of the discoverer position update strategy, the follower position update strategy, and the population structure. IASSA was employed to synchronously optimize multiple parameters of PSR-ESN. The results revealed that the proposed model has higher applicability and prediction accuracy than existing models.

Suggested Citation

  • Chao Tan & Wenrui Tan & Yanjun Shen & Long Yang, 2023. "Multistep Wind Power Prediction Using Time-Varying Filtered Empirical Modal Decomposition and Improved Adaptive Sparrow Search Algorithm-Optimized Phase Space Reconstruction–Echo State Network," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9107-:d:1164210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/9107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/9107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangyue Wang & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Short-Term Wind Power Prediction by an Extreme Learning Machine Based on an Improved Hunter–Prey Optimization Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    2. Dongyu Wang & Xiwen Cui & Dongxiao Niu, 2022. "Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    3. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    4. Weihua Tian & Yan Bao & Wei Liu & Naeem Jan, 2022. "Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, April.
    5. Hu, Huanling & Wang, Lin & Tao, Rui, 2021. "Wind speed forecasting based on variational mode decomposition and improved echo state network," Renewable Energy, Elsevier, vol. 164(C), pages 729-751.
    6. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    7. Mohsen Vahidzadeh & Corey D. Markfort, 2019. "Modified Power Curves for Prediction of Power Output of Wind Farms," Energies, MDPI, vol. 12(9), pages 1-19, May.
    8. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).
    2. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    3. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    4. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    5. Liu, Jiarui & Fu, Yuchen, 2023. "Decomposition spectral graph convolutional network based on multi-channel adaptive adjacency matrix for renewable energy prediction," Energy, Elsevier, vol. 284(C).
    6. Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
    7. Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
    8. Ke Zhang & Xiao Li & Jie Su, 2022. "Variable Support Segment-Based Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 15(11), pages 1-18, June.
    9. Li, Yanhui & Sun, Kaixuan & Yao, Qi & Wang, Lin, 2024. "A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm," Energy, Elsevier, vol. 286(C).
    10. Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).
    11. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    12. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    13. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    14. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    15. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    16. Eduardo Luiz Alba & Gilson Adamczuk Oliveira & Matheus Henrique Dal Molin Ribeiro & Érick Oliveira Rodrigues, 2024. "Electricity Consumption Forecasting: An Approach Using Cooperative Ensemble Learning with SHapley Additive exPlanations," Forecasting, MDPI, vol. 6(3), pages 1-25, September.
    17. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
    18. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    19. Xiang Ying & Keke Zhao & Zhiqiang Liu & Jie Gao & Dongxiao He & Xuewei Li & Wei Xiong, 2022. "Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, June.
    20. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9107-:d:1164210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.