IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1752-d229512.html
   My bibliography  Save this article

A Demand Response Approach to Scheduling Constrained Load Shifting

Author

Listed:
  • Pedro Faria

    (Institute of Engineering, Polytechnic of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

  • Zita Vale

    (Institute of Engineering, Polytechnic of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal)

Abstract

Demand response (DR) and its advantages are nowadays unquestionable due to the success of several recent implementations of DR programs. Improved methodologies and approaches are needed for the adequate consumers’ schedule in DR events, taking the consumers’ behaviour and preferences into account. In this paper, a virtual power player manages DR programs, minimizing operation costs, respecting the consumption shifting constraints. The impact of the consumption shifting in the target periods is taken into consideration. The advantages of the DR use in comparison with distributed generation (DG) are evaluated. Two scenarios based on 218 consumers in a frame of 96 periods have been implemented. It is demonstrated the advantages of DR in the operation of distributed energy resources, namely when considering the lack of supply.

Suggested Citation

  • Pedro Faria & Zita Vale, 2019. "A Demand Response Approach to Scheduling Constrained Load Shifting," Energies, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1752-:d:229512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    3. Kwag, Hyung-Geun & Kim, Jin-O, 2014. "Reliability modeling of demand response considering uncertainty of customer behavior," Applied Energy, Elsevier, vol. 122(C), pages 24-33.
    4. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    5. Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
    6. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    7. Faria, Pedro & Soares, Tiago & Vale, Zita & Morais, Hugo, 2014. "Distributed generation and demand response dispatch for a virtual power player energy and reserve provision," Renewable Energy, Elsevier, vol. 66(C), pages 686-695.
    8. Ebrahim Rokrok & Miadreza Shafie-khah & Pierluigi Siano & João P. S. Catalão, 2017. "A Decentralized Multi-Agent-Based Approach for Low Voltage Microgrid Restoration," Energies, MDPI, vol. 10(10), pages 1-20, September.
    9. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    10. Kitapbayev, Yerkin & Moriarty, John & Mancarella, Pierluigi, 2015. "Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems," Applied Energy, Elsevier, vol. 137(C), pages 823-831.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mota, Bruno & Faria, Pedro & Vale, Zita, 2022. "Residential load shifting in demand response events for bill reduction using a genetic algorithm," Energy, Elsevier, vol. 260(C).
    2. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    3. Morteza Vahid-Ghavidel & Mohammad Sadegh Javadi & Matthew Gough & Sérgio F. Santos & Miadreza Shafie-khah & João P.S. Catalão, 2020. "Demand Response Programs in Multi-Energy Systems: A Review," Energies, MDPI, vol. 13(17), pages 1-17, August.
    4. Tomasz Sikorski & Michal Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyla & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2020. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects," Energies, MDPI, vol. 13(12), pages 1-30, June.
    5. Adrian Tantau & András Puskás-Tompos & Laurentiu Fratila & Costel Stanciu, 2021. "Acceptance of Demand Response and Aggregators as a Solution to Optimize the Relation between Energy Producers and Consumers in order to Increase the Amount of Renewable Energy in the Grid," Energies, MDPI, vol. 14(12), pages 1-19, June.
    6. Adrian Tantau & András Puskás-Tompos & Costel Stanciu & Laurentiu Fratila & Catalin Curmei, 2021. "Key Factors Which Contribute to the Participation of Consumers in Demand Response Programs and Enable the Proliferation of Renewable Energy Sources," Energies, MDPI, vol. 14(24), pages 1-22, December.
    7. Daniel Ramos & Pedro Faria & Zita Vale & João Mourinho & Regina Correia, 2020. "Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning," Energies, MDPI, vol. 13(18), pages 1-18, September.
    8. Daniel Ramos & Mahsa Khorram & Pedro Faria & Zita Vale, 2021. "Load Forecasting in an Office Building with Different Data Structure and Learning Parameters," Forecasting, MDPI, vol. 3(1), pages 1-14, March.
    9. Gabriel Santos & Pedro Faria & Zita Vale & Tiago Pinto & Juan M. Corchado, 2020. "Constrained Generation Bids in Local Electricity Markets: A Semantic Approach," Energies, MDPI, vol. 13(15), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    3. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    4. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    6. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
    7. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    8. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    9. Jingjing Luo & Yajing Gao & Wenhai Yang & Yongchun Yang & Zheng Zhao & Shiyu Tian, 2018. "Optimal Operation Modes of Virtual Power Plants Based on Typical Scenarios Considering Output Evaluation Criteria," Energies, MDPI, vol. 11(10), pages 1-22, October.
    10. Reza Nadimi & Masahito Takahashi & Koji Tokimatsu & Mika Goto, 2024. "The Reliability and Profitability of Virtual Power Plant with Short-Term Power Market Trading and Non-Spinning Reserve Diesel Generator," Energies, MDPI, vol. 17(9), pages 1-19, April.
    11. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    12. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    13. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    14. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    15. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    17. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    18. Parhizkar, Tarannom & Mosleh, Ali & Roshandel, Ramin, 2017. "Aging based optimal scheduling framework for power plants using equivalent operating hour approach," Applied Energy, Elsevier, vol. 205(C), pages 1345-1363.
    19. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    20. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1752-:d:229512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.