IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1751-d229504.html
   My bibliography  Save this article

Hybrid AC/DC Microgrid Planning with Optimal Placement of DC Feeders

Author

Listed:
  • Xiong Wu

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zhao Wang

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Tao Ding

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zhiyi Li

    (Robert W. Galvin Center for Electricity Innovation, Illinois Institute of Technology, Chicago, IL 60616, USA)

Abstract

With the significant increase in DC loads (such as data and telecommunication centers) at the power distribution level, an additional set of power electronic converters are required to connect these DC loads to the AC-dominant power network. Notably, hybrid AC/DC microgrids (MGs) serve as promising solutions to satisfying both the AC and DC loads with a reduced number of installed converters. Since DC loads may be randomly distributed in the MG, how to place DC feeders to simultaneously fulfill the economic and security requirements of MG operations remains a challenging problem. To address this issue, this paper proposes a hybrid AC/DC MG planning model to determine the optimal placement of DC feeders with the objective of minimizing the total cost of the investment of distributed energy resources (DERs), converters, and AC/DC distribution lines, as well as the operation of DERs. In particular, the power flow of the hybrid AC/DC MG is derived in a unified manner and then incorporated in the planning model. Eventually, the proposed model suffices to find the optimal number and siting for both DERs and DC feeders while ensuring the continuality of the DC feeders. The proposed model is tested in two MG-based distribution systems, and its effectiveness is validated by the results of numerical experiments.

Suggested Citation

  • Xiong Wu & Zhao Wang & Tao Ding & Zhiyi Li, 2019. "Hybrid AC/DC Microgrid Planning with Optimal Placement of DC Feeders," Energies, MDPI, vol. 12(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1751-:d:229504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    2. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    3. Aharon Ben-Tal & Arkadi Nemirovski, 2001. "On Polyhedral Approximations of the Second-Order Cone," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 193-205, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    2. Danilo Santoro & Nicola Delmonte & Marco Simonazzi & Andrea Toscani & Nicholas Rocchi & Giovanna Sozzi & Paolo Cova & Roberto Menozzi, 2023. "Local Power Distribution—A Review of Nanogrid Architectures, Control Strategies, and Converters," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    3. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    4. Spyridon Chapaloglou & Babak Abdolmaleki & Elisabetta Tedeschi, 2023. "Optimal Generation Capacity Allocation and Droop Control Design for Current Sharing in DC Microgrids," Energies, MDPI, vol. 16(12), pages 1-17, June.
    5. Cristian Tapia & Diana Ulloa & Mayra Pacheco-Cunduri & Jorge Hernández-Ambato & Jesús Rodríguez-Flores & Victor Herrera-Perez, 2022. "Optimal Fuzzy-Based Energy Management Strategy to Maximize Self-Consumption of PV Systems in the Residential Sector in Ecuador," Energies, MDPI, vol. 15(14), pages 1-28, July.
    6. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.
    7. Łukasz Rokicki, 2021. "Optimization of the Configuration and Operating States of Hybrid AC/DC Low Voltage Microgrid Using a Clonal Selection Algorithm with a Modified Hypermutation Operator," Energies, MDPI, vol. 14(19), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    2. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    3. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    4. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    5. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    6. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    7. Gillis, Nicolas & Glineur, François & Tuyttens, Daniel & Vandaele, Arnaud, 2015. "Heuristics for exact nonnegative matrix factorization," LIDAM Discussion Papers CORE 2015006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Vinay Kumar Jadoun & Nipun Sharma & Piyush Jha & Jayalakshmi N. S. & Hasmat Malik & Fausto Pedro Garcia Márquez, 2021. "Optimal Scheduling of Dynamic Pricing Based V2G and G2V Operation in Microgrid Using Improved Elephant Herding Optimization," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    10. Alex Guamán & Alex Valenzuela, 2021. "Distribution Network Reconfiguration Applied to Multiple Faulty Branches Based on Spanning Tree and Genetic Algorithms," Energies, MDPI, vol. 14(20), pages 1-16, October.
    11. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    12. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    13. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    14. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    15. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    16. Armin Fügenschuh & Henning Homfeld & Hanno Schülldorf, 2015. "Single-Car Routing in Rail Freight Transport," Transportation Science, INFORMS, vol. 49(1), pages 130-148, February.
    17. Elattar, Ehab E., 2018. "Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources," Energy, Elsevier, vol. 159(C), pages 496-507.
    18. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    19. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    20. Shi, Qingxin & Li, Fangxing & Dong, Jin & Olama, Mohammed & Wang, Xiaofei & Winstead, Chris & Kuruganti, Teja, 2022. "Co-optimization of repairs and dynamic network reconfiguration for improved distribution system resilience," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1751-:d:229504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.