IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1743-d229257.html
   My bibliography  Save this article

Five-Level T-type Cascade Converter for Rooftop Grid-Connected Photovoltaic Systems

Author

Listed:
  • Cristian Verdugo

    (Electrical Engineering Department, Polytechnic University of Catalonia, 08222 Barcelona, Spain
    These authors contributed equally to this work.)

  • Samir Kouro

    (Electronics Engineering Department, Universidad Técnica Federico Santa María, Valparaiso 2390123, Chile
    Current address: Av. España 1680, Valparaíso 2390123, Chile.
    These authors contributed equally to this work.)

  • Christian A. Rojas

    (Electronics Engineering Department, Universidad Técnica Federico Santa María, Valparaiso 2390123, Chile
    Current address: Av. España 1680, Valparaíso 2390123, Chile.
    These authors contributed equally to this work.)

  • Marcelo A. Perez

    (Electronics Engineering Department, Universidad Técnica Federico Santa María, Valparaiso 2390123, Chile
    Current address: Av. España 1680, Valparaíso 2390123, Chile.
    These authors contributed equally to this work.)

  • Thierry Meynard

    (Institut National Polytechnique de Toulouse, 31071 Toulouse, France
    These authors contributed equally to this work.)

  • Mariusz Malinowski

    (Institute of Control & Industrial Electronics, Warsaw University of Technology, 00-662 Warsaw, Poland
    These authors contributed equally to this work.)

Abstract

Multilevel converters are widely considered to be the most suitable configurations for renewable energy sources. Their high-power quality, efficiency and performance make them interesting for PV applications. In low-power applications such as rooftop grid-connected PV systems, power converters with high efficiency and reliability are required. For this reason, multilevel converters based on parallel and cascaded configurations have been proposed and commercialized in the industry. Motivated by the features of multilevel converters based on cascaded configurations, this work presents the modulation and control of a rooftop single-phase grid-connected photovoltaic multilevel system. The configuration has a symmetrical cascade connection of two three-level T-type neutral point clamped power legs, which creates a five-level converter with two independent string connections. The proposed topology merges the benefits of multi-string PV and symmetrical cascade multilevel inverters. The switching operation principle, modulation technique and control scheme under an unbalanced power operation among the cell are addressed. Simulation and experimental validation results in a reduced-scale power single-phase converter prototype under variable conditions at different set points for both PV strings are presented. Finally, a comparative numerical analysis between other T-type configurations to highlight the advantages of the studied configuration is included.

Suggested Citation

  • Cristian Verdugo & Samir Kouro & Christian A. Rojas & Marcelo A. Perez & Thierry Meynard & Mariusz Malinowski, 2019. "Five-Level T-type Cascade Converter for Rooftop Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 12(9), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1743-:d:229257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesús Muñoz-Cruzado-Alba & Christian A. Rojas & Samir Kouro & Eduardo Galván Díez, 2016. "Power Production Losses Study by Frequency Regulation in Weak-Grid-Connected Utility-Scale Photovoltaic Plants," Energies, MDPI, vol. 9(5), pages 1-21, April.
    2. Wei-Neng Chang & Ching-Huan Liao, 2017. "Design and Implementation of a STATCOM Based on a Multilevel FHB Converter with Delta-Connected Configuration for Unbalanced Load Compensation," Energies, MDPI, vol. 10(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Szczepankowski & Jaroslaw Luszcz & Alexander Usoltsev & Natalia Strzelecka & Enrique Romero-Cadaval, 2021. "The Conceptual Research over Low-Switching Modulation Strategy for Matrix Converters with the Coupled Reactors," Energies, MDPI, vol. 14(3), pages 1-25, January.
    2. Kui-Jun Lee, 2020. "Analytical Modeling of Neutral Point Current in T-type Three-level PWM Converter," Energies, MDPI, vol. 13(6), pages 1-11, March.
    3. Christian A. Rojas & Samir Kouro & Ruben Inzunza & Yasuaki Mitsugi & Abraham M. Alcaide, 2022. "Harmonic Impedance Model of Multiple Utility-Interactive Multilevel Photovoltaic Inverters," Energies, MDPI, vol. 15(24), pages 1-21, December.
    4. Cristian Verdugo & Jose Ignacio Candela & Pedro Rodriguez, 2021. "Quadrature Voltage Compensation in the Isolated Multi-Modular Converter," Energies, MDPI, vol. 14(3), pages 1-21, January.
    5. Chandramouli Adupa & V. Sivachidambaranathan, 2022. "Critical analysis on cascaded T-type multilevel inverter topology to grid-integrated photovoltaic systems for symmetrical voltage ratios," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1474-1484, June.
    6. Tariq Kamal & Murat Karabacak & Vedran S. Perić & Syed Zulqadar Hassan & Luis M. Fernández-Ramírez, 2020. "Novel Improved Adaptive Neuro-Fuzzy Control of Inverter and Supervisory Energy Management System of a Microgrid," Energies, MDPI, vol. 13(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    2. Francesco Lo Franco & Antonio Morandi & Pietro Raboni & Gabriele Grandi, 2021. "Efficiency Comparison of DC and AC Coupling Solutions for Large-Scale PV+BESS Power Plants," Energies, MDPI, vol. 14(16), pages 1-22, August.
    3. Wei-Neng Chang & Chia-Min Chang & Shao-Kang Yen, 2018. "Improvements in Bidirectional Power-Flow Balancing and Electric Power Quality of a Microgrid with Unbalanced Distributed Generators and Loads by Using Shunt Compensators," Energies, MDPI, vol. 11(12), pages 1-14, November.
    4. Leonardo Comparatore & Magno Ayala & Yassine Kali & Jorge Rodas & Julio Pacher & Alfredo Renault & Raúl Gregor, 2023. "Discrete-Time Sliding Mode Current Control for a Seven-Level Cascade H-Bridge Converter," Energies, MDPI, vol. 16(5), pages 1-19, March.
    5. Jae-Myeong Kim & Geum-Seop Song & Jae-Jung Jung, 2021. "Zero-Sequence Voltage Injection Method for DC Capacitor Voltage Balancing of Wye-Connected CHB Converter under Unbalanced Grid and Load Conditions," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    7. Jesús Muñoz-Cruzado-Alba & Rossano Musca & Javier Ballestín-Fuertes & José F. Sanz-Osorio & David Miguel Rivas-Ascaso & Michael P. Jones & Angelo Catania & Emil Goosen, 2021. "Power Grid Integration and Use-Case Study of Acid-Base Flow Battery Technology," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    8. Xiaosheng Wang & Ke Dai & Xinwen Chen & Xin Zhang & Qi Wu & Ziwei Dai, 2019. "Reactive Power Compensation and Imbalance Suppression by Star-Connected Buck-Type D-CAP," Energies, MDPI, vol. 12(10), pages 1-16, May.
    9. Wei-Neng Chang & Ching-Huan Liao, 2019. "Development of an SDBC-MMCC-Based DSTATCOM for Real-Time Single-Phase Load Compensation in Three-Phase Power Distribution Systems," Energies, MDPI, vol. 12(24), pages 1-15, December.
    10. Claudio Burgos-Mellado & Alessandro Costabeber & Mark Sumner & Roberto Cárdenas-Dobson & Doris Sáez, 2019. "Small-Signal Modelling and Stability Assessment of Phase-Locked Loops in Weak Grids," Energies, MDPI, vol. 12(7), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1743-:d:229257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.