IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2099-d236320.html
   My bibliography  Save this article

Nonsingular Terminal Sliding Mode Control Based on Binary Particle Swarm Optimization for DC–AC Converters

Author

Listed:
  • En-Chih Chang

    (Department of Electrical Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan)

  • Chun-An Cheng

    (Department of Electrical Engineering, I-Shou University, No.1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan)

  • Lung-Sheng Yang

    (Department of Electrical Engineering, Far East University, No.49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan)

Abstract

This paper proposes an improved feedback algorithm by binary particle swarm optimization (BPSO)-based nonsingular terminal sliding mode control (NTSMC) for DC–AC converters. The NTSMC can create limited system state convergence time and allow singularity avoidance. The BPSO is capable of finding the global best solution in real-world application, thus optimizing NTSMC parameters during digital implementation. The association of NTSMC and BPSO extends the design of classical terminal sliding mode to converge to non-singular points more quickly and introduce optimal methodology to avoid falling into local extremum and low convergence precision. Simulation results show that the improved technique can achieve low total harmonic distortion (THD) and fast transients with both plant parameter variations and sudden step load changes. Experimental results of a DC–AC converter prototype controlled by an algorithm based on digital signal processing have been shown to confirm mathematical analysis and enhanced performance under transient and steady-state load conditions. Since the improved DC–AC converter system has significant advantages in tracking accuracy and solution quality over classical terminal sliding mode DC–AC converter systems, this paper will be applicable to designers of relevant robust control and optimal control technique.

Suggested Citation

  • En-Chih Chang & Chun-An Cheng & Lung-Sheng Yang, 2019. "Nonsingular Terminal Sliding Mode Control Based on Binary Particle Swarm Optimization for DC–AC Converters," Energies, MDPI, vol. 12(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2099-:d:236320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Jin & Yongli Li & Guangyu Sun & Lizhi Bu, 2017. "H∞ Repetitive Control Based on Active Damping with Reduced Computation Delay for LCL-Type Grid-Connected Inverters," Energies, MDPI, vol. 10(5), pages 1-19, April.
    2. Jaehong Kim & Jitae Hong & Hongju Kim, 2016. "Improved Direct Deadbeat Voltage Control with an Actively Damped Inductor-Capacitor Plant Model in an Islanded AC Microgrid," Energies, MDPI, vol. 9(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Zhao & Ziyu Zhou & Ye Lu & Zhuoge Li & Qiang Wei & Hongbin Xu, 2023. "Predictions of the Key Operating Parameters in Waste Incineration Using Big Data and a Multiverse Optimizer Deep Learning Model," Sustainability, MDPI, vol. 15(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    2. Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
    3. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Chengbi Zeng & Sudan Li & Hanwen Wang & Hong Miao, 2021. "A Frequency Adaptive Scheme Based on Newton Structure of PRRC for LCL-Type Inverter Connected with Weak Grid," Energies, MDPI, vol. 14(14), pages 1-18, July.
    5. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    6. Jaime A. Rohten & David N. Dewar & Pericle Zanchetta & Andrea Formentini & Javier A. Muñoz & Carlos R. Baier & José J. Silva, 2021. "Multivariable Deadbeat Control of Power Electronics Converters with Fast Dynamic Response and Fixed Switching Frequency," Energies, MDPI, vol. 14(2), pages 1-16, January.
    7. Thuy Vi Tran & Seung-Jin Yoon & Kyeong-Hwa Kim, 2018. "An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment," Energies, MDPI, vol. 11(8), pages 1-28, August.
    8. Fankun Meng & Zhengguo Li & Xiaoli Sun & Xiaoqin Wen & Michael Negnevitsky & Linru You, 2020. "Speed Fluctuation Suppression Based on an Adaptive Periodic Disturbance Observer for an Inverter Compressor," Energies, MDPI, vol. 13(19), pages 1-23, September.
    9. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    10. Filip Filipović & Milutin Petronijević & Nebojša Mitrović & Bojan Banković & Vojkan Kostić, 2019. "A Novel Repetitive Control Enhanced Phase-Locked Loop for Synchronization of Three-Phase Grid-Connected Converters," Energies, MDPI, vol. 13(1), pages 1-25, December.
    11. Lynn Verkroost & Joachim Druant & Hendrik Vansompel & Frederik De Belie & Peter Sergeant, 2019. "Performance Degradation of Surface PMSMs with Demagnetization Defect under Predictive Current Control," Energies, MDPI, vol. 12(5), pages 1-20, February.
    12. Youn-Ok Choi & Jaehong Kim, 2017. "Output Impedance Control Method of Inverter-Based Distributed Generators for Autonomous Microgrid," Energies, MDPI, vol. 10(7), pages 1-15, July.
    13. Seung-Jin Yoon & Ngoc Bao Lai & Kyeong-Hwa Kim, 2018. "A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer," Energies, MDPI, vol. 11(2), pages 1-20, February.
    14. Zhaozhao Geng & Zhigang Liu & Xinxuan Hu & Jing Liu, 2018. "Low-Frequency Oscillation Suppression of the Vehicle–Grid System in High-Speed Railways Based on H∞ Control," Energies, MDPI, vol. 11(6), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2099-:d:236320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.