IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1395-d221823.html
   My bibliography  Save this article

The Role of Open Access Data in Geospatial Electrification Planning and the Achievement of SDG7. An OnSSET-Based Case Study for Malawi

Author

Listed:
  • Alexandros Korkovelos

    (Division of Energy System Analysis, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Babak Khavari

    (Division of Energy System Analysis, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Andreas Sahlberg

    (Division of Energy System Analysis, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Mark Howells

    (Division of Energy System Analysis, KTH Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Christopher Arderne

    (The World Bank Group, Washington, DC 20433, USA)

Abstract

Achieving universal access to electricity is a development challenge many countries are currently battling with. The advancement of information technology has, among others, vastly improved the availability of geographic data and information. That, in turn, has had a considerable impact on tracking progress as well as better informing decision making in the field of electrification. This paper provides an overview of open access geospatial data and GIS based electrification models aiming to support SDG7, while discussing their role in answering difficult policy questions. Upon those, an updated version of the Open Source Spatial Electrification Toolkit (OnSSET-2018) is introduced and tested against the case study of Malawi. At a cost of $1.83 billion the baseline scenario indicates that off-grid PV is the least cost electrification option for 67.4% Malawians, while grid extension can connect about 32.6% of population in 2030. Sensitivity analysis however, indicates that the electricity demand projection determines significantly both the least cost technology mix and the investment required, with the latter ranging between $1.65–7.78 billion.

Suggested Citation

  • Alexandros Korkovelos & Babak Khavari & Andreas Sahlberg & Mark Howells & Christopher Arderne, 2019. "The Role of Open Access Data in Geospatial Electrification Planning and the Achievement of SDG7. An OnSSET-Based Case Study for Malawi," Energies, MDPI, vol. 12(7), pages 1-36, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1395-:d:221823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nerini, Francesco Fuso & Broad, Oliver & Mentis, Dimitris & Welsch, Manuel & Bazilian, Morgan & Howells, Mark, 2016. "A cost comparison of technology approaches for improving access to electricity services," Energy, Elsevier, vol. 95(C), pages 255-265.
    2. Parshall, Lily & Pillai, Dana & Mohan, Shashank & Sanoh, Aly & Modi, Vijay, 2009. "National electricity planning in settings with low pre-existing grid coverage: Development of a spatial model and case study of Kenya," Energy Policy, Elsevier, vol. 37(6), pages 2395-2410, June.
    3. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Catherine Linard & Marius Gilbert & Robert W Snow & Abdisalan M Noor & Andrew J Tatem, 2012. "Population Distribution, Settlement Patterns and Accessibility across Africa in 2010," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    5. Magda Moner‐Girona & Daniel Puig & Yacob Mulugetta & Ioannis Kougias & Jafaru AbdulRahman & Sándor Szabó, 2018. "Next generation interactive tool as a backbone for universal access to electricity," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    6. Alexandros Korkovelos & Morgan Bazilian & Dimitrios Mentis & Mark Howells, 2017. "A GIS Approach to Planning Electrification in Afghanistan," World Bank Publications - Reports 29140, The World Bank Group.
    7. Tiba, C. & Candeias, A.L.B. & Fraidenraich, N. & Barbosa, E.M. de S. & de Carvalho Neto, P.B. & de Melo Filho, J.B., 2010. "A GIS-based decision support tool for renewable energy management and planning in semi-arid rural environments of northeast of Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2921-2932.
    8. Paul Bertheau & Ayobami Solomon Oyewo & Catherina Cader & Christian Breyer & Philipp Blechinger, 2017. "Visualizing National Electrification Scenarios for Sub-Saharan African Countries," Energies, MDPI, vol. 10(11), pages 1-20, November.
    9. van Ruijven, Bas J. & Schers, Jules & van Vuuren, Detlef P., 2012. "Model-based scenarios for rural electrification in developing countries," Energy, Elsevier, vol. 38(1), pages 386-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Ciller & Sara Lumbreras & Andrés González-García, 2021. "Network Cost Estimation for Mini-Grids in Large-Scale Rural Electrification Planning," Energies, MDPI, vol. 14(21), pages 1-21, November.
    2. Andreas Sahlberg & Babak Khavari & Ismail Mohamed & Francesco Fuso Nerini, 2023. "Comparison of Least-Cost Pathways towards Universal Electricity Access in Somalia over Different Timelines," Energies, MDPI, vol. 16(18), pages 1-20, September.
    3. Vittorio Sessa & Ramchandra Bhandari & Abdramane Ba, 2021. "Rural Electrification Pathways: An Implementation of LEAP and GIS Tools in Mali," Energies, MDPI, vol. 14(11), pages 1-19, June.
    4. Menghwani, Vikas & Zerriffi, Hisham & Korkovelos, Alexandros & Khavari, Babak & Sahlberg, Andreas & Howells, Mark & Mentis, Dimitris, 2020. "Planning with justice: Using spatial modelling to incorporate justice in electricity pricing – The case of Tanzania," Applied Energy, Elsevier, vol. 264(C).
    5. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    8. El-Haddadeh, Ramzi & Osmani, Mohamad & Hindi, Nitham & Fadlalla, Adam, 2021. "Value creation for realising the sustainable development goals: Fostering organisational adoption of big data analytics," Journal of Business Research, Elsevier, vol. 131(C), pages 402-410.
    9. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    10. Ciller, Pedro & Lumbreras, Sara, 2020. "Electricity for all: The contribution of large-scale planning tools to the energy-access problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    11. Benedetto Nastasi & Massimiliano Manfren & Michel Noussan, 2020. "Open Data and Energy Analytics," Energies, MDPI, vol. 13(9), pages 1-3, May.
    12. Alexandros Korkovelos & Hisham Zerriffi & Mark Howells & Morgan Bazilian & H-Holger Rogner & Francesco Fuso Nerini, 2020. "A Retrospective Analysis of Energy Access with a Focus on the Role of Mini-Grids," Sustainability, MDPI, vol. 12(5), pages 1-29, February.
    13. Andrés González-García & Pedro Ciller & Stephen Lee & Rafael Palacios & Fernando de Cuadra García & José Ignacio Pérez-Arriaga, 2022. "A Rising Role for Decentralized Solar Minigrids in Integrated Rural Electrification Planning? Large-Scale, Least-Cost, and Customer-Wise Design of Grid and Off-Grid Supply Systems in Uganda," Energies, MDPI, vol. 15(13), pages 1-31, June.
    14. Mu-Xing Lin & Hwa Meei Liou & Kuei Tien Chou, 2020. "National Energy Transition Framework toward SDG7 with Legal Reforms and Policy Bundles: The Case of Taiwan and Its Comparison with Japan," Energies, MDPI, vol. 13(6), pages 1-20, March.
    15. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    16. Giulio Vialetto & Marco Noro, 2019. "Enhancement of a Short-Term Forecasting Method Based on Clustering and kNN: Application to an Industrial Facility Powered by a Cogenerator," Energies, MDPI, vol. 12(23), pages 1-16, November.
    17. Pedro Ciller & Fernando de Cuadra & Sara Lumbreras, 2019. "Optimizing Off-Grid Generation in Large-Scale Electrification-Planning Problems: A Direct-Search Approach," Energies, MDPI, vol. 12(24), pages 1-22, December.
    18. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    19. Kocabaldır, Canan & Yücel, Mehmet Ali, 2023. "GIS-based multicriteria decision analysis for spatial planning of solar photovoltaic power plants in Çanakkale province, Turkey," Renewable Energy, Elsevier, vol. 212(C), pages 455-467.
    20. Youssef Almulla & Camilo Ramirez & Konstantinos Pegios & Alexandros Korkovelos & Lucia de Strasser & Annukka Lipponen & Mark Howells, 2020. "A GIS-Based Approach to Inform Agriculture-Water-Energy Nexus Planning in the North Western Sahara Aquifer System (NWSAS)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    21. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciller, Pedro & Lumbreras, Sara, 2020. "Electricity for all: The contribution of large-scale planning tools to the energy-access problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    4. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    5. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    6. Alexandros Korkovelos & Hisham Zerriffi & Mark Howells & Morgan Bazilian & H-Holger Rogner & Francesco Fuso Nerini, 2020. "A Retrospective Analysis of Energy Access with a Focus on the Role of Mini-Grids," Sustainability, MDPI, vol. 12(5), pages 1-29, February.
    7. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
    8. Bolukbasi, Gizem & Kocaman, Ayse Selin, 2018. "A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems," Energy, Elsevier, vol. 160(C), pages 536-543.
    9. Alexandros Korkovelos & Dimitrios Mentis & Morgan Bazilian & Mark Howells & Anwar Saraj & Sulaiman Fayez Hotaki & Fanny Missfeldt-Ringius, 2020. "Supporting Electrification Policy in Fragile States: A Conflict-Adjusted Geospatial Least Cost Approach for Afghanistan," Sustainability, MDPI, vol. 12(3), pages 1-34, January.
    10. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
    11. Karsu, Özlem & Kocaman, Ayse Selin, 2021. "Towards the Sustainable Development Goals: A Bi-objective framework for electricity access," Energy, Elsevier, vol. 216(C).
    12. Bhattacharyya, S.C. & Palit, D., 2021. "A critical review of literature on the nexus between central grid and off-grid solutions for expanding access to electricity in Sub-Saharan Africa and South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    14. Balderrama, Sergio & Lombardi, Francesco & Stevanato, Nicolo & Peña, Gabriela & Colombo, Emanuela & Quoilin, Sylvain, 2021. "Surrogate models for rural energy planning: Application to Bolivian lowlands isolated communities," Energy, Elsevier, vol. 232(C).
    15. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    16. , Diego, 2017. "The Natural and Infrastructural Capital Elements of Potential Post-Electrification Wealth Creation in Kenya," SocArXiv ddnhz, Center for Open Science.
    17. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    18. Gregory, Julian & Sovacool, Benjamin K., 2019. "Rethinking the governance of energy poverty in sub-Saharan Africa: Reviewing three academic perspectives on electricity infrastructure investment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 344-354.
    19. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1395-:d:221823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.