IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7043-d405813.html
   My bibliography  Save this article

A GIS-Based Approach to Inform Agriculture-Water-Energy Nexus Planning in the North Western Sahara Aquifer System (NWSAS)

Author

Listed:
  • Youssef Almulla

    (Department of Energy Technology, KTH The Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Camilo Ramirez

    (Department of Energy Technology, KTH The Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Konstantinos Pegios

    (Department of Energy Technology, KTH The Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden)

  • Alexandros Korkovelos

    (Department of Energy Technology, KTH The Royal Institute of Technology, Brinellvägen 68, 10044 Stockholm, Sweden
    The World Bank, 1818 H St NW, Washington, DC 20433, USA)

  • Lucia de Strasser

    (The United Nations Economic Commission for Europe (UNECE), Bureau S411, Palais des Nations, 1211 Geneva 10, Switzerland)

  • Annukka Lipponen

    (The United Nations Economic Commission for Europe (UNECE), Bureau S411, Palais des Nations, 1211 Geneva 10, Switzerland)

  • Mark Howells

    (Department of Geography, School of Social Sciences and Humanities, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
    Center for Environmental Policy, Faculty of Natural Sciences, Imperial College London, 16-18 Princes Gardens, Knightsbridge, London SW7 1NE, UK)

Abstract

The North Western Sahara Aquifer System (NWSAS) is a vital groundwater source in a notably water-scarce region. However, impetuous agricultural expansion and poor resource management (e.g., over-irrigation, inefficient techniques) over the past decades have raised a number of challenges. In this exploratory study, we introduce an open access GIS-based model to help answer selected timely questions related to the agriculture, water and energy nexus in the region. First, the model uses spatial and tabular data to identify the location and extent of irrigated cropland. Then, it employs spatially explicit climatic datasets and mathematical formulation to estimate water and electricity requirements for groundwater irrigation in all identified locations. Finally, it evaluates selected supply options to meet the electricity demand and suggests the least-cost configuration in each location. Results indicate that full irrigation in the basin requires ~3.25 billion million m 3 per year. This translates to ~730 GWh of electricity. Fossil fuels do provide the least-cost electricity supply option due to lower capital and subsidized operating costs. Hence, to improve the competitiveness of renewable technologies (RT) (i.e., solar), a support scheme to drop the capital cost of RTs is critically needed. Finally, moving towards drip irrigation can lead to ~47% of water abstraction savings in the NWSAS area.

Suggested Citation

  • Youssef Almulla & Camilo Ramirez & Konstantinos Pegios & Alexandros Korkovelos & Lucia de Strasser & Annukka Lipponen & Mark Howells, 2020. "A GIS-Based Approach to Inform Agriculture-Water-Energy Nexus Planning in the North Western Sahara Aquifer System (NWSAS)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7043-:d:405813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2105-2128, February.
    2. Alexandros Korkovelos & Babak Khavari & Andreas Sahlberg & Mark Howells & Christopher Arderne, 2019. "The Role of Open Access Data in Geospatial Electrification Planning and the Achievement of SDG7. An OnSSET-Based Case Study for Malawi," Energies, MDPI, vol. 12(7), pages 1-36, April.
    3. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ange-Lionel Toba & Liam Boire & Timothy McJunkin, 2021. "Integrated Water-Power System Resilience Analysis in a Southeastern Idaho Irrigation District: Minidoka Case Study," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    2. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Venkatesh Baskaran & Velkennedy R, 2022. "A systematic review on the role of geographical information systems in monitoring and achieving sustainable development goal 6: Clean water and sanitation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1417-1425, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    2. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    5. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    6. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    7. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    8. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    9. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    10. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    11. Keller, Victor & Lyseng, Benjamin & English, Jeffrey & Niet, Taco & Palmer-Wilson, Kevin & Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2018. "Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system," Renewable Energy, Elsevier, vol. 125(C), pages 373-383.
    12. Jon Duan & G. Cornelis van Kooten & A. T. M. Hasibul Islam, 2023. "Calibration of Grid Models for Analyzing Energy Policies," Energies, MDPI, vol. 16(3), pages 1-21, January.
    13. Mark Howells & Brent Boehlert & Pablo César Benitez, 2021. "Potential Climate Change Risks to Meeting Zimbabwe’s NDC Goals and How to Become Resilient," Energies, MDPI, vol. 14(18), pages 1-26, September.
    14. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    15. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    16. Andreas Sahlberg & Babak Khavari & Ismail Mohamed & Francesco Fuso Nerini, 2023. "Comparison of Least-Cost Pathways towards Universal Electricity Access in Somalia over Different Timelines," Energies, MDPI, vol. 16(18), pages 1-20, September.
    17. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    18. Flores, Francisco & Feijoo, Felipe & DeStephano, Paelina & Herc, Luka & Pfeifer, Antun & Duić, Neven, 2024. "Assessment of the impacts of renewable energy variability in long-term decarbonization strategies," Applied Energy, Elsevier, vol. 368(C).
    19. Edward Wheatcroft & Henry P. Wynn & Victoria Volodina & Chris J. Dent & Kristina Lygnerud, 2021. "Model-Based Contract Design for Low Energy Waste Heat Contracts: The Route to Pricing," Energies, MDPI, vol. 14(12), pages 1-15, June.
    20. Igor Tatarewicz & Michał Lewarski & Sławomir Skwierz & Vitaliy Krupin & Robert Jeszke & Maciej Pyrka & Krystian Szczepański & Monika Sekuła, 2021. "The Role of BECCS in Achieving Climate Neutrality in the European Union," Energies, MDPI, vol. 14(23), pages 1-23, November.

    More about this item

    Keywords

    NWSAS; GIS; water; energy; agriculture; nexus;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7043-:d:405813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.