IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1385-d221560.html
   My bibliography  Save this article

Two-Layer Routing for High-Voltage Powerline Inspection by Cooperated Ground Vehicle and Drone

Author

Listed:
  • Yao Liu

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Jianmai Shi

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Zhong Liu

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Jincai Huang

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

  • Tianren Zhou

    (Science and Technology on Information Systems Engineering Laboratory, College of System Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

A novel high-voltage powerline inspection system was investigated, which consists of the cooperated ground vehicle and drone. The ground vehicle acts as a mobile platform that can launch and recycle the drone, while the drone can fly over the powerline for inspection within limited endurance. This inspection system enables the drone to inspect powerline networks in a very large area. Both vehicle’ route in the road network and drone’s routes along the powerline network have to be optimized for improving the inspection efficiency, which generates a new Two-Layer Point-Arc Routing Problem (2L-PA-RP). Two constructive heuristics were designed based on “Cluster First, Route Second” and “Route First, Split Second”. Then, local search strategies were developed to further improve the quality of the solution. To test the performance of the proposed algorithms, different-scale practical cases were designed based on the road network and powerline network of Ji’an, China. Sensitivity analysis on the parameters related to the drone’s inspection speed and battery capacity was conducted. Computational results indicate that technical improvement on the inspection sensor is more important for the cooperated ground vehicle and drone system.

Suggested Citation

  • Yao Liu & Jianmai Shi & Zhong Liu & Jincai Huang & Tianren Zhou, 2019. "Two-Layer Routing for High-Voltage Powerline Inspection by Cooperated Ground Vehicle and Drone," Energies, MDPI, vol. 12(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1385-:d:221560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, F.F & Zheng, F.L. & Wen, F.S., 2006. "Transmission investment and expansion planning in a restructured electricity market," Energy, Elsevier, vol. 31(6), pages 954-966.
    2. Niemi, R. & Lund, P.D., 2010. "Decentralized electricity system sizing and placement in distribution networks," Applied Energy, Elsevier, vol. 87(6), pages 1865-1869, June.
    3. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    4. Sarıca, Kemal & Kumbaroğlu, Gürkan & Or, Ilhan, 2012. "Modeling and analysis of a decentralized electricity market: An integrated simulation/optimization approach," Energy, Elsevier, vol. 44(1), pages 830-852.
    5. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    6. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongchen Li & Zhong Yang & Jiaming Han & Shangxiang Lai & Qiuyan Zhang & Chi Zhang & Qianhui Fang & Guoxiong Hu, 2020. "TL-Net: A Novel Network for Transmission Line Scenes Classification," Energies, MDPI, vol. 13(15), pages 1-15, July.
    2. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    3. Ahmed Daeli & Salman Mohagheghi, 2022. "Power Grid Infrastructural Resilience against Extreme Events," Energies, MDPI, vol. 16(1), pages 1-17, December.
    4. James Campbell & Ángel Corberán & Isaac Plana & José M. Sanchis & Paula Segura, 2022. "Polyhedral analysis and a new algorithm for the length constrained K–drones rural postman problem," Computational Optimization and Applications, Springer, vol. 83(1), pages 67-109, September.
    5. Faten Aljalaud & Heba Kurdi & Kamal Youcef-Toumi, 2023. "Autonomous Multi-UAV Path Planning in Pipe Inspection Missions Based on Booby Behavior," Mathematics, MDPI, vol. 11(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Lumbreras & Jesús David Gómez & Erik Francisco Alvarez & Sebastien Huclin, 2022. "The Human Factor in Transmission Network Expansion Planning: The Grid That a Sustainable Energy System Needs," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    2. Banez-Chicharro, Fernando & Olmos, Luis & Ramos, Andres & Latorre, Jesus M., 2017. "Beneficiaries of transmission expansion projects of an expansion plan: An Aumann-Shapley approach," Applied Energy, Elsevier, vol. 195(C), pages 382-401.
    3. Hagspiel, S. & Jägemann, C. & Lindenberger, D. & Brown, T. & Cherevatskiy, S. & Tröster, E., 2014. "Cost-optimal power system extension under flow-based market coupling," Energy, Elsevier, vol. 66(C), pages 654-666.
    4. Hagspiel, Simeon & Jägemann, Cosima & Lindenberger, Dietmar & Brown, Tom & Cherevatskiy, Stanislav & Tröster, Eckehard, 2013. "Cost-Optimal Power System Extension under Flow-Based Market Coupling," EWI Working Papers 2013-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Haughton, Michael A., 1998. "The performance of route modification and demand stabilization strategies in stochastic vehicle routing," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 551-566, November.
    6. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    7. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    8. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    9. Smith, John Paul, 1974. "A Lockset analysis of farm to plant milk assembly," ISU General Staff Papers 1974010108000018144, Iowa State University, Department of Economics.
    10. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    11. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    12. Göransson, Lisa & Goop, Joel & Unger, Thomas & Odenberger, Mikael & Johnsson, Filip, 2014. "Linkages between demand-side management and congestion in the European electricity transmission system," Energy, Elsevier, vol. 69(C), pages 860-872.
    13. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    14. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    15. Forma, Iris A. & Raviv, Tal & Tzur, Michal, 2015. "A 3-step math heuristic for the static repositioning problem in bike-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 230-247.
    16. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    17. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    18. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    19. Guerrero, W.J. & Prodhon, C. & Velasco, N. & Amaya, C.A., 2013. "Hybrid heuristic for the inventory location-routing problem with deterministic demand," International Journal of Production Economics, Elsevier, vol. 146(1), pages 359-370.
    20. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1385-:d:221560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.