IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1268-d219367.html
   My bibliography  Save this article

A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip

Author

Listed:
  • Najiyah Safwa Khashi’ie

    (Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
    Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia)

  • Norihan Md Arifin

    (Institute for Mathematical Research, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
    Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia)

  • Roslinda Nazar

    (School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia)

  • Ezad Hafidz Hafidzuddin

    (Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia)

  • Nadihah Wahi

    (Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia)

  • Ioan Pop

    (Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca, Romania)

Abstract

The numerical study of nanofluid stagnation point flow coupled with heat and mass transfer on a moving sheet with bi-directional slip velocities is emphasized. A magnetic field is considered normal to the moving sheet. Buongiorno’s model is utilized to assimilate the mixed effects of thermophoresis and Brownian motion due to the nanoparticles. Zero nanoparticles’ flux condition at the surface is employed, which indicates that the nanoparticles’ fraction are passively controlled. This condition makes the model more practical for certain engineering applications. The continuity, momentum, energy and concentration equations are transformed into a set of nonlinear ordinary (similarity) differential equations. Using bvp4c code in MATLAB software, the similarity solutions are graphically demonstrated for considerable parameters such as thermophoresis, Brownian motion and slips on the velocity, nanoparticles volume fraction and temperature profiles. The rate of heat transfer is reduced with the intensification of the anisotropic slip (difference of two-directional slip velocities) and the thermophoresis parameter, while the opposite result is obtained for the mass transfer rate. The study also revealed the existence of non-unique solutions on all the profiles, but, surprisingly, dual solutions exist boundlessly for any positive value of the control parameters. A stability analysis is implemented to assert the reliability and acceptability of the first solution as the physical solution.

Suggested Citation

  • Najiyah Safwa Khashi’ie & Norihan Md Arifin & Roslinda Nazar & Ezad Hafidz Hafidzuddin & Nadihah Wahi & Ioan Pop, 2019. "A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip," Energies, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1268-:d:219367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haddad, Zoubida & Oztop, Hakan F. & Abu-Nada, Eiyad & Mataoui, Amina, 2012. "A review on natural convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5363-5378.
    2. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    3. Nur Syazana Anuar & Norfifah Bachok & Ioan Pop, 2018. "A Stability Analysis of Solutions in Boundary Layer Flow and Heat Transfer of Carbon Nanotubes over a Moving Plate with Slip Effect," Energies, MDPI, vol. 11(12), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    2. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    3. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    4. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    2. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    3. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    4. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    5. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    6. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    7. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    8. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    9. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    10. Garoosi, Faroogh & Jahanshaloo, Leila & Rashidi, Mohammad Mehdi & Badakhsh, Arash & Ali, Mohammed E., 2015. "Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 183-203.
    11. Dorota Sawicka & Janusz T. Cieśliński & Slawomir Smolen, 2021. "Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids," Energies, MDPI, vol. 14(10), pages 1-14, May.
    12. Che Sidik, Nor Azwadi & Aisyah Razali, Siti, 2014. "Lattice Boltzmann method for convective heat transfer of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 864-875.
    13. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
    14. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    15. Azmi, W.H. & Sharma, K.V. & Mamat, Rizalman & Najafi, G. & Mohamad, M.S., 2016. "The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1046-1058.
    16. Nurul Amira Zainal & Roslinda Nazar & Kohilavani Naganthran & Ioan Pop, 2022. "Unsteady Separated Stagnation-Point Flow Past a Moving Plate with Suction Effect in Hybrid Nanofluid," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    17. Zhang, Zhien & Cai, Jianchao & Chen, Feng & Li, Hao & Zhang, Wenxiang & Qi, Wenjie, 2018. "Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status," Renewable Energy, Elsevier, vol. 118(C), pages 527-535.
    18. Najiyah Safwa Khashi’ie & Iskandar Waini & Anuar Ishak & Ioan Pop, 2022. "Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al 2 O 3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    19. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    20. Helena M. R. Gonçalves & Susana A. F. Neves & Abel Duarte & Verónica de Zea Bermudez, 2020. "Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids for Energy Applications," Energies, MDPI, vol. 13(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1268-:d:219367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.