IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p980-d213613.html
   My bibliography  Save this article

The Influence of Surface Radiation on the Passive Cooling of a Heat-Generating Element

Author

Listed:
  • Igor V. Miroshnichenko

    (Regional Scientific and Educational Mathematical Centre, Tomsk State University, 634050 Tomsk, Russia)

  • Mikhail A. Sheremet

    (Laboratory on Convective Heat and Mass Transfer, Tomsk State University, 634050 Tomsk, Russia)

  • Abdulmajeed A. Mohamad

    (Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, CEERE, The University of Calgary, Calgary, AB T2N 1N4, Canada)

Abstract

Low-power electronic devices are suitably cooled by thermogravitational convection and radiation. The use of modern methods of computational mechanics makes it possible to develop efficient passive cooling systems. The present work deals with the numerical study of radiative-convective heat transfer in enclosure with a heat-generating source such as an electronic chip. The governing unsteady Reynolds-averaged Navier–Stokes (URANS) equations were solved using the finite difference method. Numerical results for the stream function–vorticity formulation are shown in the form of isotherm and streamline plots and average Nusselt numbers. The influence of the relevant parameters such as the Ostrogradsky number, surface emissivity, and the Rayleigh number on fluid flow characteristics and thermal transmission are investigated in detail. The comparative assessment clearly emphasizes the effect of surface radiation on the overall energy balance and leads to change the mean temperature inside the heat generating element. The results of the present study can be applied to the design of passive cooling systems.

Suggested Citation

  • Igor V. Miroshnichenko & Mikhail A. Sheremet & Abdulmajeed A. Mohamad, 2019. "The Influence of Surface Radiation on the Passive Cooling of a Heat-Generating Element," Energies, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:980-:d:213613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Biswal, Pratibha & Basak, Tanmay, 2017. "Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1412-1457.
    3. Byeong Dong Kang & Hyun Jung Kim & Dong-Kwon Kim, 2017. "Nusselt Number Correlation for Vertical Tubes with Inverted Triangular Fins under Natural Convection," Energies, MDPI, vol. 10(8), pages 1-13, August.
    4. Guizhi Xu & Xiao Hu & Zhirong Liao & Chao Xu & Cenyu Yang & Zhanfeng Deng, 2018. "Experimental and Numerical Study of an Electrical Thermal Storage Device for Space Heating," Energies, MDPI, vol. 11(9), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abderrahmane Baïri & Nacim Alilat & Alexander Martín-Garín & Kemi Adeyeye & José-Antonio Millán-García & Luis Roseiro, 2021. "Free Convective Heat Transfer in a Closed Gap between Concentric Semi-Hemispheres," Energies, MDPI, vol. 14(22), pages 1-10, November.
    2. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.
    3. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Jaramillo, O.A. & Ramírez-Minguela, J.J. & Castro, J. Carlos & Damian-Ascencio, Cesar E. & Cano-Andrade, Sergio, 2020. "A numerical analysis of the energy and entropy generation rate in a Linear Fresnel Reflector using computational fluid dynamics," Renewable Energy, Elsevier, vol. 146(C), pages 1083-1100.
    2. Khurana, Hitesh & Majumdar, Rudrodip & Saha, Sandip K., 2022. "Response Surface Methodology-based prediction model for working fluid temperature during stand-alone operation of vertical cylindrical thermal energy storage tank," Renewable Energy, Elsevier, vol. 188(C), pages 619-636.
    3. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    4. Kumar, Vinay & Murthy, S.V.S.S.N.V.G. Krishna & Kumar, B.V. Rathish, 2023. "Multi-force effect on fluid flow, heat and mass transfer, and entropy generation in a stratified fluid-saturated porous enclosure," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 328-367.
    5. Xinyu Pan & Mengdi Yuan & Guizhi Xu & Xiao Hu & Zhirong Liao & Chao Xu, 2023. "Structure and Operation Optimization of a Form-Stable Carbonate/Ceramic-Based Electric Thermal Storage Device for Space Heating," Energies, MDPI, vol. 16(11), pages 1-18, June.
    6. Ehsan Gholamalizadeh & Mohammad Yaghoub Abdollahzadeh Jamalabadi & Majid Oveisi, 2017. "Optimal Design of Thermal Radiative Heating of Horizontal Thin Plates Using the Entropy Generation Minimization Method," Energies, MDPI, vol. 10(11), pages 1-14, November.
    7. Huichao Ji & Junyou Yang & Haixin Wang & Kun Tian & Martin Onyeka Okoye & Jiawei Feng, 2019. "Electricity Consumption Prediction of Solid Electric Thermal Storage with a Cyber–Physical Approach," Energies, MDPI, vol. 12(24), pages 1-18, December.
    8. Gu-Won Lee & Hyun Jung Kim & Dong-Kwon Kim, 2018. "Experimental Study on Horizontal Cylinders with Triangular Fins under Natural Convection," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Aleksei Khimenko & Dmitry Tikhomirov & Stanislav Trunov & Aleksey Kuzmichev & Vadim Bolshev & Olga Shepovalova, 2022. "Electric Heating System with Thermal Storage Units and Ceiling Fans for Cattle-Breeding Farms," Agriculture, MDPI, vol. 12(11), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:980-:d:213613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.