IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p836-d139518.html
   My bibliography  Save this article

Experimental Study on Horizontal Cylinders with Triangular Fins under Natural Convection

Author

Listed:
  • Gu-Won Lee

    (Department of Mechanical Engineering, Ajou University, Suwon 443-749, Korea)

  • Hyun Jung Kim

    (Department of Mechanical Engineering, Ajou University, Suwon 443-749, Korea)

  • Dong-Kwon Kim

    (Department of Mechanical Engineering, Ajou University, Suwon 443-749, Korea)

Abstract

In this study, thermal resistances of horizontal cylinders with triangular fins were measured in regard to fin numbers, fins heights, and temperature differences. Thereafter, an empirical correlation was proposed and validated for predicting the Nusselt numbers under the following conditions: Rayleigh number, 200,000–1,000,000; fin aspect ratio, 1.6–5.0; and fin number, 9–72. Finally, with the proposed correlation, the effects of fin numbers, fins heights, and fin thicknesses on the thermal resistances of the horizontal cylinders with triangular fins were investigated. It was shown that the thermal resistance generally increases as the fin number, fin height, and fin thickness increase. It is expected that horizontal cylinders for various cooling devices with triangular fins can be designed based on the findings of the present study.

Suggested Citation

  • Gu-Won Lee & Hyun Jung Kim & Dong-Kwon Kim, 2018. "Experimental Study on Horizontal Cylinders with Triangular Fins under Natural Convection," Energies, MDPI, vol. 11(4), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:836-:d:139518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byeong Dong Kang & Hyun Jung Kim & Dong-Kwon Kim, 2017. "Nusselt Number Correlation for Vertical Tubes with Inverted Triangular Fins under Natural Convection," Energies, MDPI, vol. 10(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrej Kapjor & Peter Durcansky & Martin Vantuch, 2020. "Effect of Heat Source Placement on Natural Convection from Cylindrical Surfaces," Energies, MDPI, vol. 13(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor V. Miroshnichenko & Mikhail A. Sheremet & Abdulmajeed A. Mohamad, 2019. "The Influence of Surface Radiation on the Passive Cooling of a Heat-Generating Element," Energies, MDPI, vol. 12(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:836-:d:139518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.