IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p456-d94738.html
   My bibliography  Save this article

Methodology Applied to the Evaluation of Natural Ventilation in Residential Building Retrofits: A Case Study

Author

Listed:
  • Alberto Meiss

    (GIR Arquitectura & Energía, Universidad de Valladolid, ETS Arquitectura, Valladolid 47014, Spain)

  • Miguel A. Padilla-Marcos

    (GIR Arquitectura & Energía, Universidad de Valladolid, ETS Arquitectura, Valladolid 47014, Spain)

  • Jesús Feijó-Muñoz

    (GIR Arquitectura & Energía, Universidad de Valladolid, ETS Arquitectura, Valladolid 47014, Spain)

Abstract

The primary objective of this paper is to present the use of a steady model that is able to qualify and quantify available natural ventilation flows applied to the energy retrofitting of urban residential districts. In terms of air quality, natural ventilation presents more efficient solutions compared to active systems. This method combines numeric simulations, through the utilization of Ansys Fluent R15.0 ® and Engineering Equation Solver EES ® , with on-site pressurization tests. Testing consists of the application of the seasonal pressure gradient on the building’s envelope and the calculation of the ventilation flows in three climatic representative conditions (summer, winter, and annual average). Through the implementation of this methodology to existing buildings it is possible to evaluate the influence of the built environment, as well as key parameters (relative height of the dwelling, number of vertical ventilation ducts, and airtightness of windows) of available natural ventilation.

Suggested Citation

  • Alberto Meiss & Miguel A. Padilla-Marcos & Jesús Feijó-Muñoz, 2017. "Methodology Applied to the Evaluation of Natural Ventilation in Residential Building Retrofits: A Case Study," Energies, MDPI, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:456-:d:94738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard Barry & Tong, Zheming, 2016. "Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution," Scholarly Articles 27733689, Harvard University Department of Economics.
    2. Majcen, Daša & Itard, Laure & Visscher, Henk, 2016. "Actual heating energy savings in thermally renovated Dutch dwellings," Energy Policy, Elsevier, vol. 97(C), pages 82-92.
    3. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    4. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Jesica Fernández-Agüera & Samuel Domínguez-Amarillo & Miguel Ángel Campano, 2019. "Characterising Draught in Mediterranean Multifamily Housing," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    3. Amina Irakoze & Han-Sung Choi & Kee-Han Kim, 2024. "Doing More with Less: Applying Low-Frequency Energy Data to Define Thermal Performance of House Units and Energy-Saving Opportunities," Energies, MDPI, vol. 17(16), pages 1-16, August.
    4. Joanna Ferdyn-Grygierek & Andrzej Baranowski & Monika Blaszczok & Jan Kaczmarczyk, 2019. "Thermal Diagnostics of Natural Ventilation in Buildings: An Integrated Approach," Energies, MDPI, vol. 12(23), pages 1-22, November.
    5. Miguel Ángel Padilla-Marcos & Alberto Meiss & Jesús Feijó-Muñoz, 2017. "Proposal for a Simplified CFD Procedure for Obtaining Patterns of the Age of Air in Outdoor Spaces for the Natural Ventilation of Buildings," Energies, MDPI, vol. 10(9), pages 1-17, August.
    6. Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
    7. Yi Zhang & Hongzhi Cui & Waiching Tang & Guochen Sang & Hong Wu, 2017. "Effect of Summer Ventilation on the Thermal Performance and Energy Efficiency of Buildings Utilizing Phase Change Materials," Energies, MDPI, vol. 10(8), pages 1-17, August.
    8. Carmen María Calama-González & Rafael Suárez & Ángel Luis León-Rodríguez & Samuel Domínguez-Amarillo, 2018. "Evaluation of Thermal Comfort Conditions in Retrofitted Facades Using Test Cells and Considering Overheating Scenarios in a Mediterranean Climate," Energies, MDPI, vol. 11(4), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yujiao & Tong, Zheming & Wu, Wentao & Samuelson, Holly & Malkawi, Ali & Norford, Leslie, 2019. "Achieving natural ventilation potential in practice: Control schemes and levels of automation," Applied Energy, Elsevier, vol. 235(C), pages 1141-1152.
    2. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    3. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2017. "Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology," Applied Energy, Elsevier, vol. 193(C), pages 276-286.
    5. Nutkiewicz, Alex & Jain, Rishee K. & Bardhan, Ronita, 2018. "Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India," Applied Energy, Elsevier, vol. 231(C), pages 433-445.
    6. Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
    7. Peter Rafaj & Markus Amann, 2018. "Decomposing Air Pollutant Emissions in Asia: Determinants and Projections," Energies, MDPI, vol. 11(5), pages 1-14, May.
    8. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    9. Costanzo, Vincenzo & Yao, Runming & Xu, Tiantian & Xiong, Jie & Zhang, Qiulei & Li, Baizhan, 2019. "Natural ventilation potential for residential buildings in a densely built-up and highly polluted environment. A case study," Renewable Energy, Elsevier, vol. 138(C), pages 340-353.
    10. Boya Zhou & Shaojun Zhang & Ye Wu & Wenwei Ke & Xiaoyi He & Jiming Hao, 2018. "Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 735-756, June.
    11. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    12. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    13. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    14. He, Yueer & Liu, Meng & Kvan, Thomas & Peng, Shini, 2017. "An enthalpy-based energy savings estimation method targeting thermal comfort level in naturally ventilated buildings in hot-humid summer zones," Applied Energy, Elsevier, vol. 187(C), pages 717-731.
    15. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    16. Qing He & Haiyang Zhao & Lin Shen & Liuqun Dong & Ye Cheng & Ke Xu, 2019. "Factors Influencing Residents’ Intention toward Green Retrofitting of Existing Residential Buildings," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    17. Ádám László Katona & Huang Xuan & Sara Elhadad & István Kistelegdi & István Háber, 2020. "High-Resolution CFD and In-Situ Monitoring Based Validation of an Industrial Passive Air Conduction System (PACS)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    18. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
    19. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Wang, C. & Zhu, Y. & Qu, J. & Hu, H.D., 2018. "Automatic air temperature control in a container with an optic-variable wall," Applied Energy, Elsevier, vol. 224(C), pages 671-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:456-:d:94738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.