IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v215y2021ipas036054422032226x.html
   My bibliography  Save this article

Experimental study of ash wear of heat exchange surfaces of the boiler

Author

Listed:
  • Orumbayev, Rakhimzhan K.
  • Bakhtiyar, Balzhan T.
  • Umyshev, Dias R.
  • Kumargazina, Madina B.
  • Otynchiyeva, Marzhan T.
  • Akimbek, Gulmira A.

Abstract

Annotation. Based on comparative experiments, the value of the reduction in wear was obtained for transversely washed tube bundles with different geometries, as well as for pipes and tube boards of tubular air heaters. The dependence of the wear of tube bundles and the distribution of wear along a number of relative steps is established. The dependence of the amount of wear reduction on the diameter of the pipes is established. The distribution of wear along the length of the pipe tube air heater with an upward movement is obtained. An equation of motion of a spherical particle in a dimensional and dimensionless form that describes its motion in the range Re < 1000 is obtained. Based on this equation, the probability curves of the inertial collision of particles with the surface of a single cylinder during upward and downward movements and the product of the calculated estimate of the amount of wear reduction when changing the direction of movement of the flue gas are obtained. Based on the results of experimental studies, the design of the convective surface of the heating surface with uniform wear of all rows of pipes is proposed. It is shown that the organization of upward movement in the convective shafts of boilers can significantly reduce ash wear. The obtained results allow us to choose the optimal geometric dimensions of the tube bundles from the point of view of minimal wear.

Suggested Citation

  • Orumbayev, Rakhimzhan K. & Bakhtiyar, Balzhan T. & Umyshev, Dias R. & Kumargazina, Madina B. & Otynchiyeva, Marzhan T. & Akimbek, Gulmira A., 2021. "Experimental study of ash wear of heat exchange surfaces of the boiler," Energy, Elsevier, vol. 215(PA).
  • Handle: RePEc:eee:energy:v:215:y:2021:i:pa:s036054422032226x
    DOI: 10.1016/j.energy.2020.119119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422032226X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kouprianov, V.I, 2001. "Modeling of thermal characteristics for a furnace of a 500 MW boiler fired with high-ash coal," Energy, Elsevier, vol. 26(9), pages 839-853.
    2. Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.
    3. Laubscher, Ryno & Rousseau, Pieter, 2020. "Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    2. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, vol. 11(10), pages 1-45, October.
    3. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    4. Pradhyumn Bhale & Mrinal Kaushik & Jane-Sunn Liaw & Chi-Chuan Wang, 2019. "Airside Performance of H-Type Finned Tube Banks with Surface Modifications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    5. Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
    6. Pei Li & Ting Bao & Jian Guan & Zifu Shi & Zengxiao Xie & Yonggang Zhou & Wei Zhong, 2023. "Computational Analysis of Tube Wall Temperature of Superheater in 1000 MW Ultra-Supercritical Boiler Based on the Inlet Thermal Deviation," Energies, MDPI, vol. 16(3), pages 1-15, February.
    7. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    8. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    9. Choi, Seok Min & Kwon, Hyun Goo & Bae, Hyung Mo & Moon, Hee Koo & Cho, Hyung Hee, 2023. "Effects of staggered dimple array under different flow conditions for enhancing cooling performance of solar systems," Applied Energy, Elsevier, vol. 342(C).
    10. Kuprianov, Vladimir I., 2005. "Applications of a cost-based method of excess air optimization for the improvement of thermal efficiency and environmental performance of steam boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 474-498, October.
    11. He, Qing & Gong, Yan & Ding, Lu & Guo, Qinghua & Yoshikawa, Kunio & Yu, Guangsuo, 2021. "Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification," Energy, Elsevier, vol. 229(C).
    12. Kouprianov, V. I. & Tanetsakunvatana, V., 2003. "Optimization of excess air for the improvement of environmental performance of a 150 MW boiler fired with Thai lignite," Applied Energy, Elsevier, vol. 74(3-4), pages 445-453, March.
    13. Pieter Rousseau & Ryno Laubscher & Brad Travis Rawlins, 2023. "Heat Transfer Analysis Using Thermofluid Network Models for Industrial Biomass and Utility Scale Coal-Fired Boilers," Energies, MDPI, vol. 16(4), pages 1-49, February.
    14. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    16. Hyunbin Jo & Jongkeun Park & Woosuk Kang & Junseok Hong & Sungmin Yoon & Howon Ra & Changkook Ryu, 2021. "Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 14(24), pages 1-18, December.
    17. Xin Guo & Guangbo Zhao & Zhecheng Zhang & Dongdong Feng & Yongjie Wang & Zhengshun Zhang, 2023. "A Real-Time Calculation Method to Improve Boiler Safety in Deep Peak Shaving Cases," Energies, MDPI, vol. 16(13), pages 1-19, June.
    18. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.
    19. Luo, Lei & Wen, Fengbo & Wang, Lei & Sundén, Bengt & Wang, Songtao, 2016. "Thermal enhancement by using grooves and ribs combined with delta-winglet vortex generator in a solar receiver heat exchanger," Applied Energy, Elsevier, vol. 183(C), pages 1317-1332.
    20. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:215:y:2021:i:pa:s036054422032226x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.