IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p463-d202401.html
   My bibliography  Save this article

Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China

Author

Listed:
  • Xuexiu Jia

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2,616 00, Brno, Czech Republic)

  • Jiří Jaromír Klemeš

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2,616 00, Brno, Czech Republic)

  • Petar Sabev Varbanov

    (Sustainable Process Integration Laboratory—SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2,616 00, Brno, Czech Republic)

  • Sharifah Rafidah Wan Alwi

    (Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment and School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia)

Abstract

Seawater desalination is considered a technique with high water supply potential and has become an emerging alternative for freshwater supply in China. The increase of the capacity also increases energy consumption and greenhouse gases (GHG) emissions, which has not been well investigated in studies. This study has analyzed the current development of seawater desalination in China, including the capacity, distribution, processes, as well as the desalted water use. Energy consumption and GHG emissions of overall desalination in China, as well as for the provinces, are calculated covering the period of 2006–2016. The unit product cost of seawater desalination plants specifying processes is also estimated. The results showed that 1) The installed capacity maintained increased from 2006 to 2016, and reverse osmosis is the major process used for seawater desalination in China. 2) The energy consumption increased from 81 MWh/y to 1,561 MWh/y during the 11 years. The overall GHG emission increase from 85 Mt CO 2eq /y to 1,628 Mt CO 2eq /y. Tianjin had the largest GHG emissions, following are Hebei and Shandong, with emissions of 4.1 Mt CO 2eq /y, 2.2 Mt CO 2eq /y. and 1.0 Mt CO 2eq /y. 3) The unit product cost of seawater desalination is higher than other water supply alternatives, and it differentiates the desalination processes. The average unit product cost of the reverse osmosis process is 0.96 USD and 2.5 USD for the multiple-effect distillation process. The potential for future works should specify different energy forms, e.g. heat and power. Alternatives of process integration should be investigated—e.g. efficiency of using the energy, heat integration, and renewables in water desalination, as well as the utilization of total site heat integration.

Suggested Citation

  • Xuexiu Jia & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Sharifah Rafidah Wan Alwi, 2019. "Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China," Energies, MDPI, vol. 12(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:463-:d:202401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maxwell C. Wilson & Xiao-Yan Li & Yu-Jun Ma & Andrew T. Smith & Jianguo Wu, 2017. "A Review of the Economic, Social, and Environmental Impacts of China’s South–North Water Transfer Project: A Sustainability Perspective," Sustainability, MDPI, vol. 9(8), pages 1-11, August.
    2. Raluy, Gemma & Serra, Luis & Uche, Javier, 2006. "Life cycle assessment of MSF, MED and RO desalination technologies," Energy, Elsevier, vol. 31(13), pages 2361-2372.
    3. Wang, Yongqing & Lior, Noam, 2011. "Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump," Energy, Elsevier, vol. 36(6), pages 3878-3887.
    4. Sheng, Jichuan & Webber, Michael, 2017. "Incentive-compatible payments for watershed services along the Eastern Route of China’s South-North Water Transfer Project," Ecosystem Services, Elsevier, vol. 25(C), pages 213-226.
    5. Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    3. Latifah Abdul Ghani & Nora’aini Ali & Ilyanni Syazira Nazaran & Marlia M. Hanafiah & Norhafiza Ilyana Yatim, 2021. "Carbon Footprint-Energy Detection for Desalination Small Plant Adaptation Response," Energies, MDPI, vol. 14(21), pages 1-12, November.
    4. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    5. Gyamfi, Bright Akwasi & Bein, Murad A. & Udemba, Edmund Ntom & Bekun, Festus Victor, 2021. "Investigating the pollution haven hypothesis in oil and non-oil sub-Saharan Africa countries: Evidence from quantile regression technique," Resources Policy, Elsevier, vol. 73(C).
    6. Roberto Gomes Cavalcante Júnior & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Franklin Rocha de Azevedo Filho, 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region," Energies, MDPI, vol. 12(5), pages 1-20, March.
    7. Puertas, R. & Marti, L., 2021. "International ranking of climate change action: An analysis using the indicators from the Climate Change Performance Index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Sungkyun Ha & Sungho Tae & Rakhyun Kim, 2019. "A Study on the Limitations of South Korea’s National Roadmap for Greenhouse Gas Reduction by 2030 and Suggestions for Improvement," Sustainability, MDPI, vol. 11(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system," Energy, Elsevier, vol. 111(C), pages 756-767.
    2. Anwar Aljuwaisseri & Esra Aleisa & Khawla Alshayji, 2023. "Environmental and economic analysis for desalinating seawater of high salinity using reverse osmosis: a life cycle assessment approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4539-4574, May.
    3. Qasem, Naef A.A. & Lawal, Dahiru U. & Aljundi, Isam H. & Abdallah, Ayman M. & Panchal, Hitesh, 2022. "Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system," Applied Energy, Elsevier, vol. 323(C).
    4. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    5. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    6. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    7. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    8. Francisco Berenguel-Felices & Antonio Lara-Galera & María Belén Muñoz-Medina, 2020. "Requirements for the Construction of New Desalination Plants into a Framework of Sustainability," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    9. Zhisong Chen & Lingling Pei, 2018. "Inter-Basin Water Transfer Green Supply Chain Equilibrium and Coordination under Social Welfare Maximization," Sustainability, MDPI, vol. 10(4), pages 1-28, April.
    10. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    11. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2015. "Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system," Energy, Elsevier, vol. 79(C), pages 455-466.
    12. Xiaobing Yu & Chenliang Li & Hong Chen & Zhonghui Ji, 2020. "Evaluate Air Pollution by Promethee Ranking in Yangtze River Delta of China," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    13. Araghi, Alireza Hosseini & Khiadani, Mehdi & Hooman, Kamel, 2016. "A novel vacuum discharge thermal energy combined desalination and power generation system utilizing R290/R600a," Energy, Elsevier, vol. 98(C), pages 215-224.
    14. Quanxi Wang & Ni Wang & Haodong Wang & Yuan Xiu, 2022. "Study on Influencing Factors and Simulation of Watershed Ecological Compensation Based on Evolutionary Game," Sustainability, MDPI, vol. 14(6), pages 1-23, March.
    15. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    16. Giri R. Kattel & Wenxiu Shang & Zhongjing Wang & John Langford, 2019. "China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North," Sustainability, MDPI, vol. 11(13), pages 1-12, July.
    17. Yun Teng & Peiwen Lin, 2022. "Research on Behavioral Decision-Making of Subjects on Cultivated Land Conservation under the Goal of Carbon Neutrality," Land, MDPI, vol. 11(10), pages 1-25, September.
    18. Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
    19. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    20. Roham Torabi & Alvaro Gomes & Diogo Lobo & Fernando Morgado‐Dias, 2020. "Modelling demand flexibility and energy storage to support increased penetration of renewable energy resources on Porto Santo," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1118-1132, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:463-:d:202401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.