Environmental and economic analysis for desalinating seawater of high salinity using reverse osmosis: a life cycle assessment approach
Author
Abstract
Suggested Citation
DOI: 10.1007/s10668-022-02214-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Al-Mutairi, Asma'a & Smallbone, Andrew & Al-Salem, S.M. & Roskilly, Anthony Paul, 2017. "The first carbon atlas of the state of Kuwait," Energy, Elsevier, vol. 133(C), pages 317-326.
- Raluy, Gemma & Serra, Luis & Uche, Javier, 2006. "Life cycle assessment of MSF, MED and RO desalination technologies," Energy, Elsevier, vol. 31(13), pages 2361-2372.
- Antipova, Ekaterina & Boer, Dieter & Cabeza, Luisa F. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2013. "Multi-objective design of reverse osmosis plants integrated with solar Rankine cycles and thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1137-1147.
- Abdullah Kaya & M. Evren Tok & Muammer Koc, 2019. "A Levelized Cost Analysis for Solar-Energy-Powered Sea Water Desalination in The Emirate of Abu Dhabi," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
- Al-Shayji, Khawla & Aleisa, Esra, 2018. "Characterizing the fossil fuel impacts in water desalination plants in Kuwait: A Life Cycle Assessment approach," Energy, Elsevier, vol. 158(C), pages 681-692.
- Shahabi, Maedeh P. & McHugh, Adam & Anda, Martin & Ho, Goen, 2014. "Environmental life cycle assessment of seawater reverse osmosis desalination plant powered by renewable energy," Renewable Energy, Elsevier, vol. 67(C), pages 53-58.
- Pinto, F. Silva & Marques, R. Cunha, 2017. "Desalination projects economic feasibility: A standardization of cost determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 904-915.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Yuan Yuan & Fengting Qian & Jiaqi Lu & Dungang Gu & Yuhang Lou & Na Xue & Guanghui Li & Wenjie Liao & Nan Zhang, 2022. "Design Optimization and Carbon Footprint Analysis of an Electrodeionization System with Flexible Load Regulation," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
- Xuexiu Jia & Jiří Jaromír Klemeš & Petar Sabev Varbanov & Sharifah Rafidah Wan Alwi, 2019. "Analyzing the Energy Consumption, GHG Emission, and Cost of Seawater Desalination in China," Energies, MDPI, vol. 12(3), pages 1-16, January.
- L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
- Altaee, Ali & Palenzuela, Patricia & Zaragoza, Guillermo & AlAnezi, Adnan Alhathal, 2017. "Single and dual stage closed-loop pressure retarded osmosis for power generation: Feasibility and performance," Applied Energy, Elsevier, vol. 191(C), pages 328-345.
- Panagopoulos, Argyris, 2020. "A comparative study on minimum and actual energy consumption for the treatment of desalination brine," Energy, Elsevier, vol. 212(C).
- Abdirizak Omar & Mouadh Addassi & Volker Vahrenkamp & Hussein Hoteit, 2021. "Co-Optimization of CO 2 Storage and Enhanced Gas Recovery Using Carbonated Water and Supercritical CO 2," Energies, MDPI, vol. 14(22), pages 1-21, November.
- Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
- Sharan, Prashant & Bandyopadhyay, Santanu, 2016. "Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system," Energy, Elsevier, vol. 111(C), pages 756-767.
- Lecompte, S. & Huisseune, H. & van den Broek, M. & De Schampheleire, S. & De Paepe, M., 2013. "Part load based thermo-economic optimization of the Organic Rankine Cycle (ORC) applied to a combined heat and power (CHP) system," Applied Energy, Elsevier, vol. 111(C), pages 871-881.
- Ying Zhao & Yani Bao & Wai Ling Lee, 2019. "Barriers to Adoption of Water-Saving Habits in Residential Buildings in Hong Kong," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
- Hamidzadeh, Zeinab & Sattari, Sourena & Soltanieh, Mohammad & Vatani, Ali, 2020. "Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone," Energy, Elsevier, vol. 203(C).
- Blanco-Marigorta, Ana M. & Masi, Marco & Manfrida, Giampaolo, 2014. "Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria," Energy, Elsevier, vol. 76(C), pages 223-232.
- Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
- Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
- George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
- Francisco Berenguel-Felices & Antonio Lara-Galera & María Belén Muñoz-Medina, 2020. "Requirements for the Construction of New Desalination Plants into a Framework of Sustainability," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
- Saleh, Layla & Mezher, Toufic, 2021. "Techno-economic analysis of sustainability and externality costs of water desalination production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Latifah Abdul Ghani & Ilyanni Syazira Nazaran & Nora’aini Ali & Marlia Mohd Hanafiah, 2020. "Improving Prediction Accuracy of Socio-Human Relationships in a Small-Scale Desalination Plant," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
- AlKheder, Sharaf & Almusalam, Ali, 2022. "Forecasting of carbon dioxide emissions from power plants in Kuwait using United States Environmental Protection Agency, Intergovernmental panel on climate change, and machine learning methods," Renewable Energy, Elsevier, vol. 191(C), pages 819-827.
More about this item
Keywords
Life cycle assessment; Seawater desalination; Reverse osmosis; Regression; Levelized cost; Kuwait;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:5:d:10.1007_s10668-022-02214-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.