IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p363-d200400.html
   My bibliography  Save this article

Controlled Layer-By-Layer Deposition of Carbon Nanotubes on Electrodes for Microbial Fuel Cells

Author

Listed:
  • Wenguo Wu

    (College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
    Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
    Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China)

  • Hao Niu

    (College of Chemical Engineering, Huaqiao University, Xiamen 361021, China)

  • Dayun Yang

    (Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China
    Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou 350108, China)

  • Shi-Bin Wang

    (Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
    Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, China)

  • Jiefu Wang

    (College of Chemical Engineering, Huaqiao University, Xiamen 361021, China)

  • Jia Lin

    (College of Chemical Engineering, Huaqiao University, Xiamen 361021, China)

  • Chaoyi Hu

    (College of Chemical Engineering, Huaqiao University, Xiamen 361021, China)

Abstract

Carbon nanotubes (CNTs) and polyelectrolyte poly(allylamine hydrochloride) (PAH) composite modified indium tin oxide (ITO) electrodes, by a layer-by-layer (LBL) self-assembly technique, was evaluated as an anode for microbial fuel cells (MFCs). The bioelectrochemistry of Shewanella loihica PV-4 in an electrochemical cell and the electricity generation performance of MFCs with multilayer (CNTs/PAH) n -deposited ITO electrodes as an anode were investigated. Experimental results showed that the current density generated on the multilayer modified electrode increased initially and then decreased as the deposition of the number of layers (n = 12) increased. Chronoamperometric results showed that the highest peak current density of 34.85 ± 2.80 mA/m 2 was generated on the multilayer (CNTs/PAH) 9 -deposited ITO electrode, of which the redox peak current of cyclic voltammetry was also significantly enhanced. Electrochemical impedance spectroscopy analyses showed a well-formed nanostructure porous film on the surface of the multilayer modified electrode. Compared with the plain ITO electrode, the multilayered (CNTs/PAH) 9 anodic modification improved the power density of the dual-compartment MFC by 29%, due to the appropriate proportion of CNTs and PAH, as well as the porous nanostructure on the electrodes.

Suggested Citation

  • Wenguo Wu & Hao Niu & Dayun Yang & Shi-Bin Wang & Jiefu Wang & Jia Lin & Chaoyi Hu, 2019. "Controlled Layer-By-Layer Deposition of Carbon Nanotubes on Electrodes for Microbial Fuel Cells," Energies, MDPI, vol. 12(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:363-:d:200400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zulema Borjas & Juan Manuel Ortiz & Antonio Aldaz & Juan Feliu & Abraham Esteve-Núñez, 2015. "Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater," Energies, MDPI, vol. 8(12), pages 1-14, December.
    2. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    3. Daniele Cecconet & Arianna Callegari & Andrea G. Capodaglio, 2018. "Bioelectrochemical Systems for Removal of Selected Metals and Perchlorate from Groundwater: A Review," Energies, MDPI, vol. 11(10), pages 1-21, October.
    4. David V. P. Sanchez & Daniel Jacobs & Kelvin Gregory & Jiyong Huang & Yushi Hu & Radisav Vidic & Minhee Yun, 2015. "Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1," Energies, MDPI, vol. 8(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbara Włodarczyk & Paweł P. Włodarczyk, 2020. "The Membrane-Less Microbial Fuel Cell (ML-MFC) with Ni-Co and Cu-B Cathode Powered by the Process Wastewater from Yeast Production," Energies, MDPI, vol. 13(15), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frattini, Domenico & Accardo, Grazia & Duarte, Kimberley D.Z. & Kim, Do-Heyoung & Kwon, Yongchai, 2020. "Improved biofilm adhesion and electrochemical properties of a graphite-cement composite with silica nanoflowers versus two benchmark carbon felts," Applied Energy, Elsevier, vol. 261(C).
    2. Renata Toczyłowska-Mamińska & Karolina Szymona & Patryk Król & Karol Gliniewicz & Katarzyna Pielech-Przybylska & Monika Kloch & Bruce E. Logan, 2018. "Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell," Energies, MDPI, vol. 11(1), pages 1-12, January.
    3. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    5. Iain S. Michie & Richard M. Dinsdale & Alan J. Guwy & Giuliano C. Premier, 2020. "Electrogenic Biofilm Development Determines Charge Accumulation and Resistance to pH Perturbation," Energies, MDPI, vol. 13(14), pages 1-20, July.
    6. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    8. Mohammad Faisal Umar & Mohd Rafatullah & Syed Zaghum Abbas & Mohamad Nasir Mohamad Ibrahim & Norli Ismail, 2021. "Advancement in Benthic Microbial Fuel Cells toward Sustainable Bioremediation and Renewable Energy Production," IJERPH, MDPI, vol. 18(7), pages 1-20, April.
    9. Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
    10. Hui Wang & Yu Li & Yue Mi & Dongqi Wang & Zhe Wang & Haiyu Meng & Chunbo Jiang & Wen Dong & Jiake Li & Huaien Li, 2023. "Cu(II) and Cr(VI) Removal in Tandem with Electricity Generation via Dual-Chamber Microbial Fuel Cells," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    11. Bishwambhar Mishra & Sunita Varjani & Gopalakrishnan Kumar & Mukesh Kumar Awasthi & Sanjeev Kumar Awasthi & Raveendran Sindhu & Parameswaran Binod & Eldon R Rene & Zengqiang Zhang, 2021. "Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges," Energy & Environment, , vol. 32(6), pages 1029-1058, September.
    12. Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
    13. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    14. Wang, Yuyang & Wen, Qing & Chen, Ye & Li, Wei, 2020. "Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells," Energy, Elsevier, vol. 204(C).
    15. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    16. Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.
    17. Kumar, Gopalakrishnan & Bakonyi, Péter & Zhen, Guangyin & Sivagurunathan, Periyasamy & Koók, László & Kim, Sang-Hyoun & Tóth, Gábor & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "Microbial electrochemical systems for sustainable biohydrogen production: Surveying the experiences from a start-up viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 589-597.
    18. Szymon Potrykus & Sara Mateo & Janusz Nieznański & Francisco Jesús Fernández-Morales, 2020. "The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model," Energies, MDPI, vol. 13(18), pages 1-15, September.
    19. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    20. Wang, Yuyang & Wen, Qing & Chen, Ye & Zheng, Hongtao & Wang, Shuang, 2020. "Enhanced performance of microbial fuel cell with polyaniline/sodium alginate/carbon brush hydrogel bioanode and removal of COD," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:363-:d:200400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.