IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p124-d125401.html
   My bibliography  Save this article

Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell

Author

Listed:
  • Renata Toczyłowska-Mamińska

    (Faculty of Wood Technology, Warsaw University of Life Sciences—WULS, 159 Nowoursynowska St., 02-776 Warsaw, Poland)

  • Karolina Szymona

    (Faculty of Wood Technology, Warsaw University of Life Sciences—WULS, 159 Nowoursynowska St., 02-776 Warsaw, Poland)

  • Patryk Król

    (Faculty of Wood Technology, Warsaw University of Life Sciences—WULS, 159 Nowoursynowska St., 02-776 Warsaw, Poland)

  • Karol Gliniewicz

    (Institute of Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83843, USA
    Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA)

  • Katarzyna Pielech-Przybylska

    (Institute of Fermentation Technology and Microbiology, 171/173 Wólczanska, 90-924 Łódź, Poland)

  • Monika Kloch

    (Faculty of Wood Technology, Warsaw University of Life Sciences—WULS, 159 Nowoursynowska St., 02-776 Warsaw, Poland)

  • Bruce E. Logan

    (Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802, USA)

Abstract

The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs). However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens), and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes , with the fermenters decomposing cellulose Bacteroidetes . The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides , Proteiniphilum , Catonella and Clostridium . These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.

Suggested Citation

  • Renata Toczyłowska-Mamińska & Karolina Szymona & Patryk Król & Karol Gliniewicz & Katarzyna Pielech-Przybylska & Monika Kloch & Bruce E. Logan, 2018. "Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell," Energies, MDPI, vol. 11(1), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:124-:d:125401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zulema Borjas & Juan Manuel Ortiz & Antonio Aldaz & Juan Feliu & Abraham Esteve-Núñez, 2015. "Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater," Energies, MDPI, vol. 8(12), pages 1-14, December.
    2. Toczyłowska-Mamińska, Renata & Szymona, Karolina & Madej, Hubert & Wong, Wan Zhen & Bala, Agnieszka & Brutkowski, Wojciech & Krajewski, Krzysztof & H’ng, Paik San & Mamiński, Mariusz, 2015. "Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell," Applied Energy, Elsevier, vol. 160(C), pages 88-93.
    3. Ashley E. Franks & Kelly P. Nevin, 2010. "Microbial Fuel Cells, A Current Review," Energies, MDPI, vol. 3(5), pages 1-21, April.
    4. David V. P. Sanchez & Daniel Jacobs & Kelvin Gregory & Jiyong Huang & Yushi Hu & Radisav Vidic & Minhee Yun, 2015. "Changes in Carbon Electrode Morphology Affect Microbial Fuel Cell Performance with Shewanella oneidensis MR-1," Energies, MDPI, vol. 8(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renata Toczyłowska-Mamińska, 2020. "Wood-Based Panel Industry Wastewater Meets Microbial Fuel Cell Technology," IJERPH, MDPI, vol. 17(7), pages 1-8, March.
    2. David Valero & Carlos Rico & Blondy Canto-Canché & Jorge Arturo Domínguez-Maldonado & Raul Tapia-Tussell & Alberto Cortes-Velazquez & Liliana Alzate-Gaviria, 2018. "Enhancing Biochemical Methane Potential and Enrichment of Specific Electroactive Communities from Nixtamalization Wastewater using Granular Activated Carbon as a Conductive Material," Energies, MDPI, vol. 11(8), pages 1-19, August.
    3. Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
    4. Okkyoung Choi & Sae Eun Hwang & Hyojung Park & Byoung-In Sang, 2021. "Anaerobic Digestion of Cigarette Butts: Microbial Community Analysis and Energy Production Estimation," Energies, MDPI, vol. 14(24), pages 1-14, December.
    5. Sameer Al-Asheh & Yousef Al-Assaf & Ahmed Aidan, 2020. "Single-Chamber Microbial Fuel Cells’ Behavior at Different Operational Scenarios," Energies, MDPI, vol. 13(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Wenguo Wu & Hao Niu & Dayun Yang & Shi-Bin Wang & Jiefu Wang & Jia Lin & Chaoyi Hu, 2019. "Controlled Layer-By-Layer Deposition of Carbon Nanotubes on Electrodes for Microbial Fuel Cells," Energies, MDPI, vol. 12(3), pages 1-16, January.
    3. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    4. Yifan Yu & Jafar Ali & Yuesuo Yang & Peijing Kuang & Wenjing Zhang & Ying Lu & Yan Li, 2022. "Synchronous Cr(VI) Remediation and Energy Production Using Microbial Fuel Cell from a Subsurface Environment: A Review," Energies, MDPI, vol. 15(6), pages 1-22, March.
    5. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    6. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    7. Barbara Włodarczyk & Paweł P. Włodarczyk, 2020. "The Membrane-Less Microbial Fuel Cell (ML-MFC) with Ni-Co and Cu-B Cathode Powered by the Process Wastewater from Yeast Production," Energies, MDPI, vol. 13(15), pages 1-13, August.
    8. Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
    9. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    10. Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
    11. Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
    12. Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
    13. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    14. Mohammad Faisal Umar & Mohd Rafatullah & Syed Zaghum Abbas & Mohamad Nasir Mohamad Ibrahim & Norli Ismail, 2021. "Advancement in Benthic Microbial Fuel Cells toward Sustainable Bioremediation and Renewable Energy Production," IJERPH, MDPI, vol. 18(7), pages 1-20, April.
    15. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Bishwambhar Mishra & Sunita Varjani & Gopalakrishnan Kumar & Mukesh Kumar Awasthi & Sanjeev Kumar Awasthi & Raveendran Sindhu & Parameswaran Binod & Eldon R Rene & Zengqiang Zhang, 2021. "Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges," Energy & Environment, , vol. 32(6), pages 1029-1058, September.
    17. Wang, Zhongli & Zhang, Baogang & Jiang, Yufeng & Li, Yunlong & He, Chao, 2018. "Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 33-42.
    18. Zeng, Qingyi & Bai, Jing & Li, Jinhua & Li, Linsen & Xia, Ligang & Zhou, Baoxue & Sun, Yugang, 2018. "Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatme," Applied Energy, Elsevier, vol. 220(C), pages 127-137.
    19. Gagandeep Kaur & Yadwinder Singh Brar & D.P. Kothari, 2017. "Potential of Livestock Generated Biomass: Untapped Energy Source in India," Energies, MDPI, vol. 10(7), pages 1-15, June.
    20. Nikhil, G.N. & Venkata Subhash, G. & Yeruva, Dileep Kumar & Venkata Mohan, S., 2015. "Synergistic yield of dual energy forms through biocatalyzed electrofermentation of waste: Stoichiometric analysis of electron and carbon distribution," Energy, Elsevier, vol. 88(C), pages 281-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:124-:d:125401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.