IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v32y2021i6p1029-1058.html
   My bibliography  Save this article

Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges

Author

Listed:
  • Bishwambhar Mishra
  • Sunita Varjani
  • Gopalakrishnan Kumar
  • Mukesh Kumar Awasthi
  • Sanjeev Kumar Awasthi
  • Raveendran Sindhu
  • Parameswaran Binod
  • Eldon R Rene
  • Zengqiang Zhang

Abstract

Environmental contamination with persistent organic pollutants has emerged as a serious threat of pollution. Bioremediation is a key to eliminate these harmful pollutants from the environment and has gained the interest of researchers during the past few decades. Scientific knowledge upon microbial interactions with individual pollutants over the past decades has helped to abate environmental pollution. Traditional bioremediation approaches have limitations for their applications; hence, it is essential to discover new bioremediation approaches with biotechnological interventions for best results. The developments in various methodologies are expected to increase the efficiency of bioremediation techniques and provide environmentally sound strategies. This paper deals with the profiling of microorganisms present in polluted sites using various techniques such as culture-based approaches and omics-based approaches. Besides this, it also provides up-to-date scientific literature on the microbial electrochemical technologies which are nowadays considered as the best approach for remediation of pollutants. Detailed information about future outlook and challenges to evaluate the effect of various treatment technologies for remediation of pollutants has been discussed.

Suggested Citation

  • Bishwambhar Mishra & Sunita Varjani & Gopalakrishnan Kumar & Mukesh Kumar Awasthi & Sanjeev Kumar Awasthi & Raveendran Sindhu & Parameswaran Binod & Eldon R Rene & Zengqiang Zhang, 2021. "Microbial approaches for remediation of pollutants: Innovations, future outlook, and challenges," Energy & Environment, , vol. 32(6), pages 1029-1058, September.
  • Handle: RePEc:sae:engenv:v:32:y:2021:i:6:p:1029-1058
    DOI: 10.1177/0958305X19896781
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X19896781
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X19896781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zulema Borjas & Juan Manuel Ortiz & Antonio Aldaz & Juan Feliu & Abraham Esteve-Núñez, 2015. "Strategies for Reducing the Start-up Operation of Microbial Electrochemical Treatments of Urban Wastewater," Energies, MDPI, vol. 8(12), pages 1-14, December.
    2. Thi Dong Phuong Nguyen & Duc Huy Nguyen & Jun Wei Lim & Chih-Kai Chang & Hui Yi Leong & Thi Ngoc Thu Tran & Thi Bich Hau Vu & Thi Trung Chinh Nguyen & Pau Loke Show, 2019. "Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater," Energies, MDPI, vol. 12(12), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robab Salami & Masoumeh Kordi & Parisa Bolouri & Nasser Delangiz & Behnam Asgari Lajayer, 2021. "Algae-Based Biorefinery as a Sustainable Renewable Resource," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1349-1365, December.
    2. Wenguo Wu & Hao Niu & Dayun Yang & Shi-Bin Wang & Jiefu Wang & Jia Lin & Chaoyi Hu, 2019. "Controlled Layer-By-Layer Deposition of Carbon Nanotubes on Electrodes for Microbial Fuel Cells," Energies, MDPI, vol. 12(3), pages 1-16, January.
    3. Kumar, Gopalakrishnan & Bakonyi, Péter & Zhen, Guangyin & Sivagurunathan, Periyasamy & Koók, László & Kim, Sang-Hyoun & Tóth, Gábor & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "Microbial electrochemical systems for sustainable biohydrogen production: Surveying the experiences from a start-up viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 589-597.
    4. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    5. Sze Shin Low & Kien Xiang Bong & Muhammad Mubashir & Chin Kui Cheng & Man Kee Lam & Jun Wei Lim & Yeek Chia Ho & Keat Teong Lee & Heli Siti Halimatul Munawaroh & Pau Loke Show, 2021. "Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    6. Renata Toczyłowska-Mamińska & Karolina Szymona & Patryk Król & Karol Gliniewicz & Katarzyna Pielech-Przybylska & Monika Kloch & Bruce E. Logan, 2018. "Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell," Energies, MDPI, vol. 11(1), pages 1-12, January.
    7. Xinru Zhang & Hao Yuan & Libo Guan & Xinyu Wang & Yi Wang & Zeyi Jiang & Limei Cao & Xinxin Zhang, 2019. "Influence of Photoperiods on Microalgae Biofilm: Photosynthetic Performance, Biomass Yield, and Cellular Composition," Energies, MDPI, vol. 12(19), pages 1-10, September.
    8. Kai Ling Yu & Hwai Chyuan Ong & Halimah Badioze Zaman, 2022. "Microalgae Biomass as Biofuel and the Green Applications," Energies, MDPI, vol. 15(19), pages 1-6, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:32:y:2021:i:6:p:1029-1058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.