IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4730-d296828.html
   My bibliography  Save this article

Evaluation of Optimization-Based EV Charging Scheduling with Load Limit in a Realistic Scenario

Author

Listed:
  • Steffen Limmer

    (Honda Research Institute Europe GmbH, 63073 Offenbach, Germany)

Abstract

In the literature, optimization-based approaches are frequently proposed for the control of electric vehicle charging. However, they are usually evaluated under simplifying assumptions and are not compared to more simple approaches. The present work compares optimization-based approaches with rule-based ones in a simple but realistic scenario, in which a certain limit for the total load has to be satisfied. The scenario is based on the situation at an office building in Germany. In simulation experiments, different control approaches are evaluated not only in terms of pure performance but also from an economic perspective. The results indicate that, although the optimization-based approaches outperform the rule-based approaches, they are not always the right choice from an economic point of view.

Suggested Citation

  • Steffen Limmer, 2019. "Evaluation of Optimization-Based EV Charging Scheduling with Load Limit in a Realistic Scenario," Energies, MDPI, vol. 12(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4730-:d:296828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steffen Limmer, 2019. "Dynamic Pricing for Electric Vehicle Charging—A Literature Review," Energies, MDPI, vol. 12(18), pages 1-24, September.
    2. Tobias Rodemann & Tom Eckhardt & René Unger & Torsten Schwan, 2019. "Using Agent-Based Customer Modeling for the Evaluation of EV Charging Systems," Energies, MDPI, vol. 12(15), pages 1-16, July.
    3. Christoph M. Flath & Jens P. Ilg & Sebastian Gottwalt & Hartmut Schmeck & Christof Weinhardt, 2014. "Improving Electric Vehicle Charging Coordination Through Area Pricing," Transportation Science, INFORMS, vol. 48(4), pages 619-634, November.
    4. Jinil Han & Jongyoon Park & Kyungsik Lee, 2017. "Optimal Scheduling for Electric Vehicle Charging under Variable Maximum Charging Power," Energies, MDPI, vol. 10(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongxu Guo & Geng Yang & Guangjin Zhao & Mengchao Yi & Xuning Feng & Xuebing Han & Languang Lu & Minggao Ouyang, 2020. "Determination of the Differential Capacity of Lithium-Ion Batteries by the Deconvolution of Electrochemical Impedance Spectra," Energies, MDPI, vol. 13(4), pages 1-14, February.
    2. Marija Zima-Bockarjova & Antans Sauhats & Lubov Petrichenko & Roman Petrichenko, 2020. "Charging and Discharging Scheduling for Electrical Vehicles Using a Shapley-Value Approach," Energies, MDPI, vol. 13(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Schaden & Thomas Jatschka & Steffen Limmer & Günther Robert Raidl, 2021. "Smart Charging of Electric Vehicles Considering SOC-Dependent Maximum Charging Powers," Energies, MDPI, vol. 14(22), pages 1-33, November.
    2. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.
    3. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    4. Obeid, Hassan & Ozturk, Ayse Tugba & Zeng, Wente & Moura, Scott J., 2023. "Learning and optimizing charging behavior at PEV charging stations: Randomized pricing experiments, and joint power and price optimization," Applied Energy, Elsevier, vol. 351(C).
    5. Visaria, Anant Atul & Jensen, Anders Fjendbo & Thorhauge, Mikkel & Mabit, Stefan Eriksen, 2022. "User preferences for EV charging, pricing schemes, and charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 120-143.
    6. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    8. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    9. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
    10. Emmanuele Bobbio & Simon Brandkamp & Stephanie Chan & Peter Cramton & David Malec & Lucy Yu, 2022. "Price Responsive Demand in Britain's Electricity Market," ECONtribute Discussion Papers Series 185, University of Bonn and University of Cologne, Germany.
    11. Theron Smith & Joseph Garcia & Gregory Washington, 2022. "Novel PEV Charging Approaches for Extending Transformer Life," Energies, MDPI, vol. 15(12), pages 1-17, June.
    12. Ye, Tinghan & Liu, Shanshan & Kontou, Eleftheria, 2024. "Managed residential electric vehicle charging minimizes electricity bills while meeting driver and community preferences," Transport Policy, Elsevier, vol. 149(C), pages 122-138.
    13. Yan Bao & Fangyu Chang & Jinkai Shi & Pengcheng Yin & Weige Zhang & David Wenzhong Gao, 2022. "An Approach for Pricing of Charging Service Fees in an Electric Vehicle Public Charging Station Based on Prospect Theory," Energies, MDPI, vol. 15(14), pages 1-20, July.
    14. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    15. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Winschermann, Leoni & Bañol Arias, Nataly & Hoogsteen, Gerwin & Hurink, Johann, 2023. "Assessing the value of information for electric vehicle charging strategies at office buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Akansha Jain & Masoud Karimi-Ghartemani, 2022. "Mitigating Adverse Impacts of Increased Electric Vehicle Charging on Distribution Transformers," Energies, MDPI, vol. 15(23), pages 1-26, November.
    18. Liang, Yanni & Zhang, Xingping, 2018. "Battery swap pricing and charging strategy for electric taxis in China," Energy, Elsevier, vol. 147(C), pages 561-577.
    19. Feifeng Zheng & Zhixin Wang & Zhaojie Wang & Ming Liu, 2023. "Daytime and Overnight Joint Charging Scheduling for Battery Electric Buses Considering Time-Varying Charging Power," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    20. Liang Gong & Yinzhen Li & Dejie Xu, 2019. "Combinational Scheduling Model Considering Multiple Vehicle Sizes," Sustainability, MDPI, vol. 11(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4730-:d:296828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.