IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i7p1344-1353.html
   My bibliography  Save this article

Efficient prediction strategies for disturbance compensation in stochastic MPC

Author

Listed:
  • Basil Kouvaritakis
  • Mark Cannon
  • Diego Muñoz-Carpintero

Abstract

The optimisation of predicted control policies in model predictive control (MPC) enables the use of information on uncertainty that, though not available at current time, will be so at a future point on the prediction horizon. Optimisation over feedback laws is however prohibitively computationally expensive. The so-called affine-in-the-disturbance strategies provide a compromise and this article considers the use of disturbance compensation in the context of stochastic MPC. Unlike the earlier approaches, compensation here is applied over the entire prediction horizon (extending to infinity) thereby leading to a significant constraint relaxation which makes more control authority available for the optimisation of performance. In addition, our compensation has a striped lower triangular dependence on the uncertainty on account of which the relevant gains can be obtained sequentially, thereby reducing computational complexity. Further reduction in computation is achieved by performing this computation offline. Simulation results show that this reduction can be gained at a negligible cost in terms of closed-loop performance.

Suggested Citation

  • Basil Kouvaritakis & Mark Cannon & Diego Muñoz-Carpintero, 2013. "Efficient prediction strategies for disturbance compensation in stochastic MPC," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(7), pages 1344-1353.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:7:p:1344-1353
    DOI: 10.1080/00207721.2012.737487
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2012.737487
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2012.737487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Gabriel Marín & Mark Sumner & Diego Muñoz-Carpintero & Daniel Köbrich & Seksak Pholboon & Doris Sáez & Alfredo Núñez, 2019. "Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control," Energies, MDPI, vol. 12(23), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:7:p:1344-1353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.