IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4296-d285816.html
   My bibliography  Save this article

Synthesis of Optimal Battery State-of-Charge Trajectory for Blended Regime of Plug-in Hybrid Electric Vehicles in the Presence of Low-Emission Zones and Varying Road Grades

Author

Listed:
  • Jure Soldo

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb 10002, Croatia)

  • Branimir Škugor

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb 10002, Croatia)

  • Joško Deur

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb 10002, Croatia)

Abstract

The powertrain efficiency for plug-in hybrid electric vehicles (PHEV) can be maximized by gradually discharging the battery in a blended regime, where the engine is regularly used all over the driving cycle. A key step in designing an optimal PHEV control strategy for the blended regime corresponds to synthesis of battery state-of-charge (SoC) reference trajectory. The paper first demonstrates that the optimal SoC trajectory can significantly differ from a typical linear-like shape in the case of varying road grade and presence of low-emission zones (LEZ). Next, dynamic programming (DP)-based optimizations of PHEV control variables are conducted for the purpose of extracting and analyzing optimal SoC trajectory patterns. It is shown that the optimality is closely related to the minimization of SoC trajectory length with respect to travelled distance. This finding is used for SoC reference trajectory synthesis in the presence of LEZ and varying road grades. Finally, the overall PHEV control strategy is applied to a PHEV-type city bus and verified by means of computer simulations in comparison with the DP optimization benchmark.

Suggested Citation

  • Jure Soldo & Branimir Škugor & Joško Deur, 2019. "Synthesis of Optimal Battery State-of-Charge Trajectory for Blended Regime of Plug-in Hybrid Electric Vehicles in the Presence of Low-Emission Zones and Varying Road Grades," Energies, MDPI, vol. 12(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4296-:d:285816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    2. Shaobo Xie & Huiling Li & Zongke Xin & Tong Liu & Lang Wei, 2017. "A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route," Energies, MDPI, vol. 10(9), pages 1-22, September.
    3. Cipek, Mihael & Pavković, Danijel & Petrić, Joško, 2013. "A control-oriented simulation model of a power-split hybrid electric vehicle," Applied Energy, Elsevier, vol. 101(C), pages 121-133.
    4. Onori, Simona & Tribioli, Laura, 2015. "Adaptive Pontryagin’s Minimum Principle supervisory controller design for the plug-in hybrid GM Chevrolet Volt," Applied Energy, Elsevier, vol. 147(C), pages 224-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jure Soldo & Branimir Škugor & Joško Deur, 2021. "Online Synthesis of an Optimal Battery State-of-Charge Reference Trajectory for a Plug-in Hybrid Electric City Bus," Energies, MDPI, vol. 14(11), pages 1-24, May.
    2. Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
    3. Jakov Topić & Jure Soldo & Filip Maletić & Branimir Škugor & Joško Deur, 2020. "Virtual Simulation of Electric Bus Fleets for City Bus Transport Electrification Planning," Energies, MDPI, vol. 13(13), pages 1-24, July.
    4. Yang Gao & Changhong Liu & Yuan Liang & Sadegh Kouhestani Hamed & Fuwei Wang & Bo Bi, 2022. "Minimizing Energy Consumption and Powertrain Cost of Fuel Cell Hybrid Vehicles with Consideration of Different Driving Cycles and SOC Ranges," Energies, MDPI, vol. 15(17), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jure Soldo & Branimir Škugor & Joško Deur, 2021. "Online Synthesis of an Optimal Battery State-of-Charge Reference Trajectory for a Plug-in Hybrid Electric City Bus," Energies, MDPI, vol. 14(11), pages 1-24, May.
    2. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    3. Li, Yapeng & Wang, Feng & Tang, Xiaolin & Hu, Xiaosong & Lin, Xianke, 2022. "Convex optimization-based predictive and bi-level energy management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 257(C).
    4. Shangguan, Jinyong & Guo, Hongqiang & Yue, Ming, 2020. "Robust energy management of plug-in hybrid electric bus considering the uncertainties of driving cycles and vehicle mass," Energy, Elsevier, vol. 203(C).
    5. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    6. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    7. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    8. Lin, Xinyou & Huang, Hao & Xu, Xinhao & Xie, Liping, 2024. "Dynamic programming solutions extracted SOC-trajectory online learning generation algorithm based approximate global optimization control strategy for a fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 295(C).
    9. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Lang, Kun, 2018. "An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 163(C), pages 837-848.
    10. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    11. Peng, Fei & Zhao, Yuanzhe & Chen, Ting & Zhang, Xuexia & Chen, Weirong & Zhou, Donghua & Li, Qi, 2018. "Development of robust suboptimal real-time power sharing strategy for modern fuel cell based hybrid tramways considering operational uncertainties and performance degradation," Applied Energy, Elsevier, vol. 226(C), pages 503-521.
    12. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    13. Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
    14. Xie, Shaobo & Hu, Xiaosong & Xin, Zongke & Brighton, James, 2019. "Pontryagin’s Minimum Principle based model predictive control of energy management for a plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 236(C), pages 893-905.
    15. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    16. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    17. Lu Han & Xiaohong Jiao & Zhao Zhang, 2020. "Recurrent Neural Network-Based Adaptive Energy Management Control Strategy of Plug-In Hybrid Electric Vehicles Considering Battery Aging," Energies, MDPI, vol. 13(1), pages 1-22, January.
    18. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    19. Zhang, Fengqi & Xiao, Lehua & Coskun, Serdar & Pang, Hui & Xie, Shaobo & Liu, Kailong & Cui, Yahui, 2023. "Comparative study of energy management in parallel hybrid electric vehicles considering battery ageing," Energy, Elsevier, vol. 264(C).
    20. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4296-:d:285816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.