IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4840-d610905.html
   My bibliography  Save this article

Sequential Capacitor-Based Closed-Loop Precharge Control during the Single-Phase MMC Start-Up Process

Author

Listed:
  • Walid Ahmed Maher Ghoneim

    (Department of Electrical and Control Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt)

  • Ahmed Alaa Aziz

    (Department of Electrical and Control Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt)

Abstract

Modularity, flexible scalability, and high efficiency are some of the aspects that have paved the way toward the modular multilevel converter (MMC) being regarded as one of the most encouraging converter technologies for medium-/high-power applications; however, the precharging process of all the distributed submodules’ capacitors during the MMC’s start-up is considered to be a very challenging technical problem, which has been the center of attention since the emergence of the MMC back in 2002. In this paper, a new start-up method based on the sequential capacitors’ charging method is introduced for precharging the single-phase MMC from the DC grid while drastically reducing the charging (start-up) time. A detailed design algorithm for the proposed start-up method is presented. The findings of the simulation of the proposed method are provided to illustrate the capability of the suggested method.

Suggested Citation

  • Walid Ahmed Maher Ghoneim & Ahmed Alaa Aziz, 2021. "Sequential Capacitor-Based Closed-Loop Precharge Control during the Single-Phase MMC Start-Up Process," Energies, MDPI, vol. 14(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4840-:d:610905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    2. Vladimir Parra-Elizondo & Ana Karina Cuentas-Gallegos & Beatriz Escobar-Morales & José Martín Baas-López & Jorge Alonso Uribe-Calderón & Daniella Esperanza Pacheco-Catalán, 2019. "Electrochemical Assessment of As-Deposited Co(OH) 2 by Electrochemical Synthesis: The Effect of Synthesis Temperature on Performance," Energies, MDPI, vol. 12(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4840-:d:610905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.