IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3824-d1136454.html
   My bibliography  Save this article

Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors

Author

Listed:
  • Xin Zhang

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
    National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou 213164, China)

  • Shi Liu

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Yuqi Zhao

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Haicun Yang

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Jinchun Li

    (School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
    National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou 213164, China
    Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou 213164, China)

Abstract

Porous carbon materials (PCs) were prepared via hydrothermal carbonization from calcium lignosulfonate (CL) based on enzymatic hydrolysis and alkali activation. The effects of enzymatic hydrolysis and different KOH feeding ratios on the structure and electrochemical properties of enzymatic hydrolysis CL (EHCL)-derived PCs were evaluated in detail. The results showed that the EHCL-derived PCs showed a higher SSA than that of CL. When the mass ratio of KOH/EHCL was 3/2, the PCs exhibited a honeycomb-like microscopic morphology with a specific surface area of up to 1771 m 2 /g and a 3D hierarchical porous structure composed of abundant micropores, mesopores, and macropores. As an electrode in a supercapacitor, the highest specific capacitance was 147 F/g at a current density of 0.25 A/g, and it maintained 78% of the initial value at a high current density of 10 A/g. The excellent electrochemical cycle and structural stability were confirmed on the condition of a higher capacitance retention of 95.2% after 5000 times of galvanostatic charge/discharge. This work provides a potential application of CL in high-performance supercapacitors.

Suggested Citation

  • Xin Zhang & Shi Liu & Yuqi Zhao & Haicun Yang & Jinchun Li, 2023. "Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors," Energies, MDPI, vol. 16(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3824-:d:1136454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Liyang & Morabito, Molly & Payne, Christopher T. & Robinson, Gerald, 2020. "Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California," Energy Policy, Elsevier, vol. 146(C).
    2. Shah, Syed Ale Raza & Naqvi, Syed Asif Ali & Riaz, Sabahat & Anwar, Sofia & Abbas, Nasir, 2020. "Nexus of biomass energy, key determinants of economic development and environment: A fresh evidence from Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Yedluri Anil Kumar & Hee-Je Kim, 2018. "Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors," Energies, MDPI, vol. 11(12), pages 1-16, November.
    4. Gou, Guangjun & Huang, Fei & Jiang, Man & Li, Jinyang & Zhou, Zuowan, 2020. "Hierarchical porous carbon electrode materials for supercapacitor developed from wheat straw cellulosic foam," Renewable Energy, Elsevier, vol. 149(C), pages 208-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juntao Wei & Jiawei Sun & Deliang Xu & Lei Shi & Miao Wang & Bin Li & Xudong Song & Shu Zhang & Hong Zhang, 2023. "Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    2. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    3. Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    5. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    6. Myroslava Bublyk & Agnieszka Kowalska-Styczeń & Vasyl Lytvyn & Victoria Vysotska, 2021. "The Ukrainian Economy Transformation into the Circular Based on Fuzzy-Logic Cluster Analysis," Energies, MDPI, vol. 14(18), pages 1-17, September.
    7. Shah, Syed Ale Raza & Zhang, Qianxiao & Abbas, Jaffar & Balsalobre-Lorente, Daniel & Pilař, Ladislav, 2023. "Technology, Urbanization and Natural Gas Supply Matter for Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26," Resources Policy, Elsevier, vol. 82(C).
    8. Li, Dong & Guo, Yanchuan & Li, Yi & Liu, Zhengang & Chen, Zeliang, 2022. "Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials," Renewable Energy, Elsevier, vol. 188(C), pages 61-69.
    9. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    10. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    11. Yang, Xin & Zhou, Xiaohe & Deng, Xiangzheng, 2022. "Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    12. Todd, Iain & McCauley, Darren, 2021. "Assessing policy barriers to the energy transition in South Africa," Energy Policy, Elsevier, vol. 158(C).
    13. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    14. Dai, Zhong & Ren, Peng-Gang & He, Wenwei & Hou, Xin & Ren, Fang & Zhang, Qian & Jin, Yan-Ling, 2020. "Boosting the electrochemical performance of nitrogen-oxygen co-doped carbon nanofibers based supercapacitors through esterification of lignin precursor," Renewable Energy, Elsevier, vol. 162(C), pages 613-623.
    15. Yongming Zhu & Lanxiao Niu & Zheyun Zhao & Jing Li, 2022. "The Tripartite Evolution Game of Environmental Governance under the Intervention of Central Government," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    16. Adekoya, Oluwasegun B. & Akinbayo, Sukurat B. & Ishola, Oluwabunmi A. & Al-Faryan, Mamdouh Abdulaziz Saleh, 2023. "Are all the U.S. biomass energy sources green?," Energy Policy, Elsevier, vol. 179(C).
    17. Shamal Chandra Karmaker & Kanchan Kumar Sen & Shaymal C. Halder & Andrew Chapman & Shahadat Hosan & Md. Matiar Rahman & Bidyut Baran Saha, 2024. "Evaluating the Ecological Footprint of Biomass Energy: Parametric and Time-Varying Nonparametric Analyses," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    18. Chang, Tsangyao & Hsu, Chen-Min & Chen, Sheng-Tung & Wang, Mei-Chih & Wu, Cheng-Feng, 2023. "Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 319-342.
    19. Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
    20. Mahdi Vahdanjoo & Michael Nørremark & Claus G. Sørensen, 2021. "A System for Optimizing the Process of Straw Bale Retrieval," Sustainability, MDPI, vol. 13(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3824-:d:1136454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.