IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4197-d283234.html
   My bibliography  Save this article

Mathematical Modeling of the Mojave Solar Plants

Author

Listed:
  • Antonio J. Gallego

    (Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain)

  • Manuel Macías

    (Atlantica Yield, Albert Einstein s/n, 41092 Sevilla, Spain)

  • Fernando de Castilla

    (Atlantica Yield, Albert Einstein s/n, 41092 Sevilla, Spain)

  • Eduardo F. Camacho

    (Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain)

Abstract

Competitiveness of solar energy is one of current main research topics. Overall efficiency of solar plants can be improved by using advanced control strategies. To design and tuning properly advanced control strategies, a mathematical model of the plant is needed. The model has to fulfill two important points: (1) It has to reproduce accurately the dynamics of the real system; and (2) since the model is used to test advanced control strategies, its computational burden has to be as low as possible. This trade-off is essential to optimize the tuning process of the controller and minimize the commissioning time. In this paper, the modeling of the large-scale commercial solar trough plants Mojave Beta and Mojave Alpha is presented. These two models were used to test advanced control strategies to operate the plants.

Suggested Citation

  • Antonio J. Gallego & Manuel Macías & Fernando de Castilla & Eduardo F. Camacho, 2019. "Mathematical Modeling of the Mojave Solar Plants," Energies, MDPI, vol. 12(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4197-:d:283234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lourdes A. Barcia & Rogelio Peón Menéndez & Juan Á. Martínez Esteban & Miguel A. José Prieto & Juan A. Martín Ramos & F. Javier De Cos Juez & Antonio Nevado Reviriego, 2015. "Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants," Energies, MDPI, vol. 8(12), pages 1-17, November.
    2. Manenti, Flavio & Ravaghi-Ardebili, Zohreh, 2013. "Dynamic simulation of concentrating solar power plant and two-tanks direct thermal energy storage," Energy, Elsevier, vol. 55(C), pages 89-97.
    3. Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2018. "Heat transfer enhancement in parabolic trough collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 198-218.
    4. Antonio Nevado Reviriego & Félix Hernández-del-Olmo & Lourdes Álvarez-Barcia, 2017. "Nonlinear Adaptive Control of Heat Transfer Fluid Temperature in a Parabolic Trough Solar Power Plant," Energies, MDPI, vol. 10(8), pages 1-12, August.
    5. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    6. L.J. Yebra & M. Berenguel & J. Bonilla & L. Roca & S. Dormido & E. Zarza, 2010. "Object-oriented modelling and simulation of ACUREX solar thermal power plant," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 16(3), pages 211-224, July.
    7. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiz-Moreno, Sara & Sanchez, Adolfo J. & Gallego, Antonio J. & Camacho, Eduardo F., 2022. "A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors," Renewable Energy, Elsevier, vol. 186(C), pages 691-703.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    2. Simian Pang & Zixuan Zheng & Fan Luo & Xianyong Xiao & Lanlan Xu, 2021. "Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    3. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    4. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    5. Li, Lu & Li, Yinshi & Yu, Huajie & He, Ya-Ling, 2020. "A feedforward-feedback hybrid control strategy towards ordered utilization of concentrating solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 305-315.
    6. Abubakr, Mohamed & Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Hassan, Muhammed A., 2020. "An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids," Renewable Energy, Elsevier, vol. 157(C), pages 130-149.
    7. Xiufan Liang & Yiguo Li, 2019. "Transient Analysis and Execution-Level Power Tracking Control of the Concentrating Solar Thermal Power Plant," Energies, MDPI, vol. 12(8), pages 1-17, April.
    8. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Wu, Yunna & Zhang, Buyuan & Wu, Chenghao & Zhang, Ting & Liu, Fangtong, 2019. "Optimal site selection for parabolic trough concentrating solar power plant using extended PROMETHEE method: A case in China," Renewable Energy, Elsevier, vol. 143(C), pages 1910-1927.
    10. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    11. Li, Xiaolei & Xu, Ershu & Song, Shuang & Wang, Xiangyan & Yuan, Guofeng, 2017. "Dynamic simulation of two-tank indirect thermal energy storage system with molten salt," Renewable Energy, Elsevier, vol. 113(C), pages 1311-1319.
    12. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    13. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    14. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    15. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
    16. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    17. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    18. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    19. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    20. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4197-:d:283234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.