IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222019314.html
   My bibliography  Save this article

Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector

Author

Listed:
  • Danish, Syed Noman
  • Al-Ansary, Hany
  • El-Leathy, Abdelrahman
  • Ba-Abbad, Mazen
  • Khan, Salah Ud-Din
  • Rizvi, Arslan
  • Orfi, Jamel
  • Al-Nakhli, Ahmed

Abstract

In this paper, techno-economic analysis and the experimental campaign for a new solar concentrating system are presented. Two novel receivers (Jet impingement receiver with mesh structure & helical channel receiver) are tested on a novel collector technology. The collector technology integrates the two established models of solar concentrating technologies, which are linear Fresnel reflector technology and central receiver technology, into the new concept called the Point Focus Fresnel Collector (PFFC). It is found that the PFFC system with jet impingement receiver and mesh structure provides higher thermal efficiency and manufacturing ease compared to parabolic dish systems. Maximum thermal efficiency of jet impingement receiver is highest at 87% whereas that for helical channel receiver is 83%. Average thermal efficiency of jet impingement receiver is 61% whereas that for helical channel receiver is 58%. Economic analysis of the system reveals that the discounted payback time for the PFFC system is only 5.5 years and less than one year compared to diesel and electricity powered steam generators respectively at an inflation rate of 2.5%. Substantial saving is predicted with PFFC system compared to diesel and electricity powered steam generator. For all discount rates in the range of 2.5–25%, the levelized cost of energy (LCOE) for PFFC system is much lower than that of LCOE in Saudi Arabia for conventional system. Since the LCOE in most of the Middle East and North Africa (MENA) countries is higher than the LCOE in Saudi Arabia, therefore, the PFFC system is also suitable for other MENA countries where average direct normal irradiation values are comparable to Saudi Arabia.

Suggested Citation

  • Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222019314
    DOI: 10.1016/j.energy.2022.125035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beltrán-Chacon, Ricardo & Leal-Chavez, Daniel & Sauceda, D. & Pellegrini-Cervantes, Manuel & Borunda, Mónica, 2015. "Design and analysis of a dead volume control for a solar Stirling engine with induction generator," Energy, Elsevier, vol. 93(P2), pages 2593-2603.
    2. Chennaif, Mohammed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2021. "Electric System Cascade Extended Analysis for optimal sizing of an autonomous hybrid CSP/PV/wind system with Battery Energy Storage System and thermal energy storage," Energy, Elsevier, vol. 227(C).
    3. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    4. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K., 2016. "The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications," Energy, Elsevier, vol. 114(C), pages 513-525.
    5. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
    8. Stefan Pfenninger & Paul Gauché & Johan Lilliestam & Kerstin Damerau & Fabian Wagner & Anthony Patt, 2014. "Potential for concentrating solar power to provide baseload and dispatchable power," Nature Climate Change, Nature, vol. 4(8), pages 689-692, August.
    9. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montanet, Edouard & Rodat, Sylvain & Falcoz, Quentin & Roget, Fabien, 2023. "Influence of topography on the optical performances of a Fresnel linear asymmetrical concentrator array: The case of the eLLO solar power plant," Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuxuan & Wang, Ding & Zou, Chongzhe & Gao, Wei & Zhang, Yanping, 2022. "Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions," Energy, Elsevier, vol. 246(C).
    2. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    3. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    4. Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
    5. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    6. Rajan, Abhinav & Reddy, K.S., 2023. "Integrated optical and thermal model to investigate the performance of a solar parabolic dish collector coupled with a cavity receiver," Renewable Energy, Elsevier, vol. 219(P1).
    7. Damien Bazin & Nouri Chtourou & Amna Omri, 2019. "Risk management and policy implications for concentrating solar power technology investments in Tunisia," Post-Print hal-02061788, HAL.
    8. Wang, Ding & Chen, Yuxuan & Xiao, Hu & Zhang, Yanping, 2022. "Effects of geometric and operating parameters on thermal performance of conical cavity receivers using supercritical CO2 as heat transfer fluid," Renewable Energy, Elsevier, vol. 185(C), pages 804-819.
    9. Jian, Yan & Peng, You Duo & Liu, Yong Xiang, 2022. "An optical-mechanical integrated modeling method of solar dish concentrator system for optical performance analysis under service load," Energy, Elsevier, vol. 261(PB).
    10. Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
    11. Xiao, Lan & He, Song & Shen, Zu-Guo & Wu, Shuang-Ying & Chen, Zhi-Li, 2022. "Wind-induced convective heat loss of cylindrical receiver considering the effect of dish concentrator," Renewable Energy, Elsevier, vol. 182(C), pages 900-912.
    12. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    13. Jorge M. Llamas & David Bullejos & Manuel Ruiz de Adana, 2019. "Optimization of 100 MW e Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions," Energies, MDPI, vol. 12(20), pages 1-23, October.
    14. Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
    15. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    16. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    17. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    18. Xu, Cheng & Xin, Tuantuan & Xu, Gang & Li, Xiaosa & Liu, Wenyi & Yang, Yongping, 2017. "Thermodynamic analysis of a novel solar-hybrid system for low-rank coal upgrading and power generation," Energy, Elsevier, vol. 141(C), pages 1737-1749.
    19. Kenneth Ritter & Albert McBride & Terrence Chambers, 2021. "Soiling Comparison of Mirror Film and Glass Concentrating Solar Power Reflectors in Southwest Louisiana," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    20. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222019314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.