IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v16y2010i3p211-224.html
   My bibliography  Save this article

Object-oriented modelling and simulation of ACUREX solar thermal power plant

Author

Listed:
  • L.J. Yebra
  • M. Berenguel
  • J. Bonilla
  • L. Roca
  • S. Dormido
  • E. Zarza

Abstract

Research and development of advanced control systems to optimize the overall performance of parabolic trough collector (PTC) solar power plants is a priority line of research at the CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Research Centre for Energy, Environment and Technology ). These developments are underway at the CIEMAT's Plataforma Solar de Almera (PSA), a highly specialized solar energy technology research centre. Some dynamic models for use in simulation and control of this type of solar power plant, developed in the PSA ACUREX facility, are presented in this article. The models developed are based on the ThermoFluid thermohydraulic modelling framework, in the Modelica modelling language. The ACUREX facility is presented with the main components modelled and their respective modelling assumptions. An operation strategy is presented and modelled based on the StateGraph Modelica library for discrete and reactive system modelling. A typical experiment is simulated with real experimental input data, a discrete operating strategy is designed and predicted model data are presented and discussed.

Suggested Citation

  • L.J. Yebra & M. Berenguel & J. Bonilla & L. Roca & S. Dormido & E. Zarza, 2010. "Object-oriented modelling and simulation of ACUREX solar thermal power plant," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 16(3), pages 211-224, July.
  • Handle: RePEc:taf:nmcmxx:v:16:y:2010:i:3:p:211-224
    DOI: 10.1080/13873954.2010.507420
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2010.507420
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2010.507420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio J. Gallego & Manuel Macías & Fernando de Castilla & Eduardo F. Camacho, 2019. "Mathematical Modeling of the Mojave Solar Plants," Energies, MDPI, vol. 12(21), pages 1-20, November.
    2. Heng, Shye Yunn & Asako, Yutaka & Suwa, Tohru & Nagasaka, Ken, 2019. "Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network," Renewable Energy, Elsevier, vol. 131(C), pages 168-179.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:16:y:2010:i:3:p:211-224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.